系统仿真学报 ›› 2025, Vol. 37 ›› Issue (1): 220-233.doi: 10.16182/j.issn1004731x.joss.23-1009

• 论文 • 上一篇    

融合全局选择与局部区分的车辆重识别网络

徐胜军1,2, 张梦倩1,2, 詹博涵3, 刘光辉1,2, 孟月波1,2   

  1. 1.西安建筑科技大学 信息与控制工程学院,陕西 西安 710055
    2.西安市建筑制造智能化技术重点实验室,陕西 西安 710055
    3.西安交通大学,陕西 西安 710049
  • 收稿日期:2023-08-15 修回日期:2023-10-29 出版日期:2025-01-20 发布日期:2025-01-23
  • 通讯作者: 张梦倩
  • 第一作者简介:徐胜军(1976-),男,副教授,博士,研究方向为人工智能与智动化系统、模式识别。
  • 基金资助:
    陕西省重点研发计划(2021SF-429);陕西省自然科学基础研究计划(2023-JC-YB-532)

Global Selection and Local Differentiation Fusion for Vehicle Re-identification

Xu Shengjun1,2, Zhang Mengqian1,2, Zhan Bohan3, Liu Guanghui1,2, Meng Yuebo1,2   

  1. 1.College of Information and Control Engineering, Xi 'an University of Architecture and Technology, Xi'an 710055, China
    2.Xi'an Key Labratory of Building Manufactaring Intelligent & Automation Technology, Xi'an 710055, China
    3.Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2023-08-15 Revised:2023-10-29 Online:2025-01-20 Published:2025-01-23
  • Contact: Zhang Mengqian

摘要:

针对跨镜头多视角差异导致车辆重识别面临的不同视角、复杂背景和光照强度等干扰问题,提出了一种融合全局选择与局部区分的车辆重识别网络。基于Resnet50骨干网络,设计了融合全局特征与局部特征的三分支互补网络,利用全局分支学习车辆的整体外观信息,局部分支捕获车辆的差异性细节信息。基于注意力机制提出了上下文特征选择模块(context feature selection module, CFSM),有效分离了车辆信息与复杂背景信息,并提出了一种细节特征增强模块(detail feature enhancement module,DFEM),利用部件之间的相对位置信息强化多粒度特征细节信息的学习。提出了一种权值自适应平衡策略,联合多损失函数进行训练。实验结果表明,所提网络在VeRi-776数据集上的mAPCMC@1和CMC@5分别达到73.2%、93.4%和97.3%;在VehicleID数据集的大规模测试子集上,CMC@1和CMC@5分别达到75.0%和92.7%。与对比网络相比,所提网络具有较高的识别率和鲁棒性。

关键词: 车辆重识别, 多分支结构, 全局上下文特征, 局部区分特征, 权值自适应策略

Abstract:

To address the interference issues of different perspectives, complex backgrounds, and lighting intensity in vehicle re-identification caused by cross lens multi view differences, a vehicle re-identification network integrating global selection and local differentiation is proposed. Based on Resnet50 backbone network, a three-branch complementary network integrating global and local features is designed. The global branch is used to learn overall appearance information of the vehicle, while the local branch captures differential details of the vehicle. Based on attention mechanism, a context feature selection module (CFSM)is proposed to effectively separate vehicle information from complex background information, and a detail feature enhancement module (DFEM) is proposed to enhance the learning of multi granularity feature detail information by utilizing relative position information between components. A weight adaptive balancing strategyis proposed in combination with multiple loss functions for training. Experimental results show that on VeRi-776 dataset, the proposed network achieves 73.2%, 93.4% and 97.3% respectively on the mAP, CMC@1 and CMC@5. On a large-scale testing subset of VehicleID dataset, the proposed network achieves 75.0% and 92.7% respectively on the CMC@1 and CMC@5. Compared with the comparison network, the proposed network has higher recognition rate and robustness.

Key words: vehicle re-identification, multi-branch structure, global context features, local distinguishing features, weight adaptive strategy

中图分类号: