系统仿真学报 ›› 2026, Vol. 38 ›› Issue (1): 225-234.doi: 10.16182/j.issn1004731x.joss.25-0862

• 论文 • 上一篇    

VRBT:轻量级骨骼识别与损伤预警VR羽毛球训练方法

朱羽宁1, 杨猛1, 陈天玥1, 孟维亮2,3   

  1. 1.北京林业大学 信息学院,北京 100083
    2.中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190
    3.中国科学院大学 人工智能学院,北京 100049
  • 收稿日期:2025-09-06 修回日期:2025-10-22 出版日期:2026-01-18 发布日期:2026-01-28
  • 通讯作者: 杨猛
  • 第一作者简介:朱羽宁(2004-),女,本科生,研究方向为虚拟现实、人工智能等。
  • 基金资助:
    国家自然科学基金(62376271);国家自然科学基金(62572059);北京市自然科学基金(JQ23014)

VRBT: VR Badminton Training with Multitask Injury Alerts based on Lightweight 3D Skeletal Reconstruction

Zhu Yuning1, Yang Meng1, Chen Tianyue1, Meng Weiliang2,3   

  1. 1.School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
    2.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
    3.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-09-06 Revised:2025-10-22 Online:2026-01-18 Published:2026-01-28
  • Contact: Yang Meng

摘要:

针对传统羽毛球训练的场地与指导限制,提出一种基于多模型集成与协同仿真的VR羽毛球训练方法。构建了“感知-决策-交互”的闭环仿真框架:基于Unity引擎开发训练模拟、智能对抗及休闲游戏三大多场景训练模块,通过物理引擎实现运动轨迹仿真;采用轻量化MHFormer架构优化三维骨骼重建;设计多任务增强型损伤预测方法(enhanced injury prediction system, EIPS),集成随机森林与XGBoost实现损伤概率、风险等级及预警类型的联合输出。通过上述模型的协同仿真,系统实现了对复杂人机交互过程的综合模拟与实时评估。所提方法可为解决骨骼重建实时性与精度的平衡难题提供思路,构建动态风险评分模型支撑个性化防护。

关键词: 虚拟现实, 羽毛球训练, 三维骨骼识别, 运动损伤预警, 多任务学习

Abstract:

To overcome the limitations of traditional badminton training, a VR training method that integrates multiple models for collaborative simulation is proposed. A "perception-decision- interaction" framework is developed within Unity, featuring diverse training modules powered by a physics engine for realistic trajectory simulation. The system employs a lightweight MHFormer for 3D pose estimation and a novel multi-task model (enhanced injury prediction system, EIPS) that combines random forest and XGBoost to jointly assess injury risk. This approach offers a solution for balancing real-time performance with accuracy in skeleton reconstruction and enables personalized training through dynamic risk assessment.

Key words: virtual reality(VR), badminton training, 3D skeleton recognition, sports injury early warning, multi-task learning

中图分类号: