[1] |
Hayward M, Chan T, Healey A. Dedicated Time for Deliberate Practice: One Emergency Medicine Program's Approach to point-of-care Ultrasound (PoCUS) Training[J]. CJEM: Canadian Journal of Emergency Medicine (S1481-8035), 2015, 17(5): 558-561.
|
[2] |
Heer I M, Middendorf K, Müller-Egloff S, et al. Ultrasound Training: The Virtual Patient[J]. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology (S0960-7692), 2004, 24(4): 440-444.
|
[3] |
Nicastro I, Barletta V, Conte L, et al. Professional Education, Training and Role of the Cardiac Sonographer in Different Countries[J]. Journal of Cardiovascular Echography (S2211-4122), 2013, 23(1): 18-23.
|
[4] |
Tafra L. The Learning Curve and Sentinel Node Biopsy[J]. American Journal of Surgery (S0002-9610), 2001, 182(4): 347-350.
|
[5] |
Gardner C J, Brown S, Hagen-Ansert S, et al. Guidelines for Cardiac Sonographer Education: Report of the American Society of Echocardiography Sonographer Education and Training Committee[J]. Journal of the American Society of Echocardiography (S0894-7317), 1992, 14(6): 77-84.
|
[6] |
Blum T, Rieger A, Navab N, et al. A Review of Computer-Based Simulators for Ultrasound Training[J]. Simulation in Healthcare (S1559-2332), 2013, 8(2): 98-108.
|
[7] |
Mattausch O, Goksel O. Monte-Carlo Ray-Tracing for Realistic Interactive Ultrasound Simulation[C]//Eurographics Workshop on Visual Computing for Biology and Medicine. Bergen, Norway: Eurographics Association, 2016: 173-181.
|
[8] |
Dror Aiger, Daniel Cohen-Or. Real-Time Ultrasound Imaging Simulation[J]. Real-Time Imaging (S1077-2014), 1998, 4(4): 263-274.
|
[9] |
Troccaz J, Henry D, Laieb N, et al. Simulators for Medical Training: Application to Vascular Ultrasound Imaging[J]. Journal of Visualization and Computer Animation (S1049-8907), 2000, 11(1): 51-65.
|
[10] |
D’ Aulignac D, Laugier C, Troccaz J, et al. Towards a Realistic Echographic Simulator[J]. Medical Image Analysis (S1361-8415), 2006, 10(1): 71-81.
|
[11] |
Goksel O, Salcudean S E. B-Mode Ultrasound Image Simulation in Deformable 3-D Medium[J]. IEEE Transactions on Medical Imaging (S0278-0062), 2009, 28(11): 1657-1669.
|
[12] |
Jensen J A, Svendsen N B. Calculation of Pressure Fields from Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (S0885-3010), 1992, 39(2): 262-267.
|
[13] |
Treeby B E, Cox B T. k-Wave: MATLAB Toolbox for the Simulation and Reconstruction of Photoacoustic Wave Fields[J]. Journal of Biomedical Optics (S1560-2281), 2010, 15(2): 021314.
|
[14] |
Alles E J, Zhu Y, van Dongen K W A, et al. Rapid Transient Pressure Field Computations in the Nearfield of Circular Transducers Using Frequency-Domain Time-Space Decomposition[J]. Ultrasonic imaging (S0161-7346), 2012, 34(4): 237-260.
|
[15] |
Zemp R J, Abbey C K, Insana M F. Linear System Models for Ultrasonic Imaging: Application to Signal Statistics[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control (S0885-3010), 2003, 50(6): 642-654.
|
[16] |
Burger B, Bettinghausen S, Radle M, et al. Real-Time GPU-Based Ultrasound Simulation Using Deformable Mesh Models[J]. IEEE Transactions on Medical Imaging (S0278-0062), 2013, 32(3): 609-618.
|
[17] |
Hu Y, Gibson E, Lee L L, et al. Freehand Ultrasound Image Simulation with Spatially-Conditioned Generative Adversarial Networks[C]//Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. Québec City, QC, Canada: Springer, Cham, 2017: 105-115.
|
[18] |
Tom Francis, Sheet Debdoot. Simulating Patho- Realistic Ultrasound Images Using Deep Generative Networks with Adversarial Learning[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington DC: IEEE, 2018: 1174-1177.
|
[19] |
Peng B, Huang X, Wang S, et al. A Real-Time Medical Ultrasound Simulator Based on a Generative Adversarial Network Model[C]//2019 IEEE International Conference on Image Processing (ICIP). Taipei, China: IEEE, 2019: 4629-4633.
|
[20] |
Hall R A, Greenberg D P. A Testbed for Realistic Image Synthesis[J]. Computer Graphics & Applications IEEE (S0272-1716), 1983, 3(8): 10-20.
|
[21] |
Jan Novák, Dachsbacher C. Rasterized Bounding Volume Hierarchies[J]. Computer Graphics Forum (S0167-7055), 2012, 31(2): 403-412.
|
[22] |
Benny Buerger, Ciamak Abkai, Juergen Hesser. Simulation of Dynamic Ultrasound Based on CT Models for Medical Education[J]. Studies in Health Technology and Informatics (S0926-9630), 2008(132): 56-61.
|
[23] |
Parker K J. Shapes and Distributions of Soft Tissue Scatterers(Article)[J]. Physics in Medicine and Biology (S0031-9155), 2019, 64: 17.
|
[24] |
Richard G Barr, Kazutaka Nakashima, Dominique Amy, et al. WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 2; Breast[J]. Ultrasound in Medicine & Biology (S1879-291X), 2015, 41(5): 1148-1160.
|
[25] |
Coolbaugh C L, Bush E C, Caskey C F, et al. FloWaveUS: Validated, Open-Source, and Flexible Software for Ultrasound Blood Flow Analysis[J]. Journal of Applied Physiology (S8750-7587), 2016, 121(4): 849-857.
|
[26] |
Wang Y, Helminen E, Jiang J. Building a Virtual Simulation Platform for Quasistatic Breast Ultrasound Elastography Using Open Source Software: A Preliminary Investigation[J]. Medical Physics (S0094-2405), 2015, 42(9): 5453-5466.
|
[27] |
Wang Y, Peng B, Jiang J. Building an Open-Source Simulation Platform of Acoustic Radiation Force-Based Breast Elastography[J]. Physics in Medicine & Biology (S0031-9155), 2017, 62(5): 1949-1968.
|