系统仿真学报 ›› 2022, Vol. 34 ›› Issue (11): 2425-2436.doi: 10.16182/j.issn1004731x.joss.21-0180

• 仿真支撑平台/系统技术 • 上一篇    下一篇

基于光线追踪的实时超声模拟与虚拟现实的集成

彭博1,2,3(), 汪强1, 青芮冰1, 尹立雪2,3, 姜劲枫4   

  1. 1.西南石油大学,计算机科学学院,四川  成都  610500
    2.四川省医学科学院·四川省人民医院 心血管超声及心功能科,四川  成都  610072
    3.四川省医学科学院·四川省人民医院 超声心脏电生理学与生物力学四川省重点实验室,四川  成都  610072
    4.美国密歇根理工大学,生物医学工程系,美国 密歇根州  霍顿  49931
  • 收稿日期:2021-03-08 修回日期:2021-04-28 出版日期:2022-11-18 发布日期:2022-11-25
  • 作者简介:彭博(1980-),男,博士,教授,研究方向为医学超声成像、医学图像与信号分析。E-mail:bopeng@swpu.edu.cn
  • 基金资助:
    四川省科技厅应用基础研究(2021YJ0248);四川省成都市科技局国际合作项目(2019-GH02-00040-HZ)

A Real-time Ultrasound Simulation Platform Using Ray Tracing and Its Integration with Virtual Reality

Bo Peng1,2,3(), Qiang Wang1, Ruibing Qing1, Lixue Yin2,3, Jingfeng Jiang4   

  1. 1.School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
    2.Dept. of Echo-cardiology and Non-invasive Cardiology, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu 610072, China
    3.Sichuan Academy of Medical Sciences·Sichuan Provincial People's Hospital, Sichuan Provincial Key Laboratory of Echocardiography and Biomechanics, Chengdu 610072, China
    4.Dept. of Biomedical Engineering, Michigan Tech University, Houghton, MI 49931, USA
  • Received:2021-03-08 Revised:2021-04-28 Online:2022-11-18 Published:2022-11-25

摘要:

为进一步提高超声医师培训效率以及降低培训成本,开发了一种与虚拟现实(VR)环境集成在一起的超声训练系统。将基于光线追踪的超声图像模拟方法整合到虚拟现实环境中,利用沉浸式VR体验进行医学超声培训,并将该方法获得的模拟超声图像与使用基于生成对抗网络(GAN)技术和Field II超声模拟器模拟的超声图像进行比较。实验数据表明,本文的超声模拟器在光线数量为256,模型的三角片数量超过200 000的条件下,能够以43帧/s的速度实时生成高质量的模拟超声图像,同时验证了光线追踪结合VR环境进行超声模拟是可行的。

关键词: 虚拟现实, 超声模拟, 医学图像模拟, 光线追踪, 超声训练检查

Abstract:

In order to further improve the efficacy of ultrasound training and reduce the cost. An ultrasound training system that is integrated with a VR environment is developed. The main contribution of this study is to incorporate the Ray-tracing based ultrasound image simulation approach into a virtual reality environment, taking advantage of immersive VR experience for medical ultrasound training. The simulated ultrasound images obtained by the proposed method are then compared to images that are simulated using a generative adversarial network (GAN) technique and Field II ultrasound simulator. The data show that the ultrasound simulator can produce high-quality simulated ultrasound images in real-time at 43 frames/s by tracing over 256 rays through numerical phantom models with more than 200 000 triangles, at the same time, it is verified that ray tracing combined with VR environment for ultrasonic simulation is feasible.

Key words: virtual reality, ultrasound simulation, medical image simulation, ray-tracing, sonography training

中图分类号: