系统仿真学报 ›› 2024, Vol. 36 ›› Issue (6): 1298-1308.doi: 10.16182/j.issn1004731x.joss.24-0118

• 论文 • 上一篇    下一篇

基于多目标进化算法的防空导弹武器目标分配

孙昕1(), 邢立宁2(), 王锐1, 王凌3, 石建迈1, 罗天羽1   

  1. 1.国防科技大学 系统工程学院, 湖南 长沙 410073
    2.西安电子科技大学 电子工程学院, 陕西 西安 710126
    3.清华大学 自动化系, 北京 100084
  • 收稿日期:2024-01-30 修回日期:2024-04-24 出版日期:2024-06-28 发布日期:2024-06-19
  • 通讯作者: 邢立宁 E-mail:nudtsunx@163.com;lnxing@xidian.edu.cn
  • 第一作者简介:孙昕(1996-),男,博士生,研究方向为智能优化和资源调度。E-mail:nudtsunx@163.com
  • 基金资助:
    国家自然科学基金(62036006);陕西省重点科技创新团队(2023-CX-TD-07);陕西省重点研发计划(2024GH-ZDXM-48)

Air Defense Missile Weapon Target Assignment Based on Multi-objective Evolutionary Algorithm

Sun Xin1(), Xing Lining2(), Wang Rui1, Wang Ling3, Shi Jianmai1, Luo Tianyu1   

  1. 1.College of Systems Engineering, National University of Defense Science and Technology, Changsha 410073, China
    2.College of Electronic Engineering, Xi'an University of Electronic Science and Technology, Xi'an 710071, China
    3.Department of Automation, Tsinghua University, Beijing 100084, China
  • Received:2024-01-30 Revised:2024-04-24 Online:2024-06-28 Published:2024-06-19
  • Contact: Xing Lining E-mail:nudtsunx@163.com;lnxing@xidian.edu.cn

摘要:

有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,在基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)基础上进行改进,种群进化过程中自适应调整交叉与变异的概率以提高个体的质量,最终得到一组可供决策者使用的最优解集。实验结果表明:与其他多目标进化算法相比,该算法能得到适应度更高且分布性良好的结果,能够为防空导弹武器目标分配问题提供可行方案。

关键词: 武器目标分配, 多目标进化算法, 自适应参数, 防空导弹

Abstract:

An effective weapon target assignment method can reduce the combat losses and improve the defense effect. A reasonable mathematical model is established for the allocation of air defense resources, aiming at the optimization objectives of maximizing target destruction effectiveness and minimizing radar resource consumption, considering multiple constraints such as the upper limit of radar channels, on the basis of multiobjective evolutionary algorithm based on decomposition (MOEA/D), the probability of crossover and mutation is adaptively adjusted to improve the quality of individuals in the process of population evolution, and a set of optimal solution sets for decision makers is obtained. The results show that, compared with other multi-objective evolutionary algorithms, the algorithm can obtain the higher fitness values and good distributivity, and can provide a feasible solution to the weapon target assignment for air defense missile.

Key words: weapon-target assignment, multi-objective evolutionary algorithm, adaptive parameter, air defence missile

中图分类号: