系统仿真学报 ›› 2024, Vol. 36 ›› Issue (5): 1152-1164.doi: 10.16182/j.issn1004731x.joss.22-1486
收稿日期:
2022-12-12
修回日期:
2023-02-15
出版日期:
2024-05-15
发布日期:
2024-05-21
第一作者简介:
赵嘉(1981-),男,教授,博士,研究方向为复杂系统建模与优化、智能计算与计算智能、大数据与深度学习等。 E-mail:zhaojia925@163.com
基金资助:
Zhao Jia1(), Lai Zhizhen1, Wu Runxiu1, Cui Zhihua2, Wang Hui1
Received:
2022-12-12
Revised:
2023-02-15
Online:
2024-05-15
Published:
2024-05-21
摘要:
针对多目标萤火虫算法在求解过程中易产生振荡和聚集现象,导致开发能力较弱、求解精度不佳的问题,提出一种层级引导的增强型多目标萤火虫算法(hierarchical guided enhanced multi- objective firefly algorithm, HGEMOFA)。构建层级引导模型,利用非支配排序获得不同层级个体,用优势层个体引导劣势层个体进化,明确引导方向,解决了进化过程中出现的振荡,减少了聚集现象的出现,增强了算法收敛性;引入莱维飞行扰动最优层个体,增强算法的全局搜索能力;每代进化完成后,对当前种群采用变异机制,增强算法的局部开发能力;把变异后的种群和前一代种群合并进行环境选择,筛选出和前一代种群规模相同的子代,避免优势解丢失。实验结果表明:HGEMOFA能有效增强解的收敛性和多样性。
中图分类号:
赵嘉,赖智臻,吴润秀等 . 层级引导的增强型多目标萤火虫算法[J]. 系统仿真学报, 2024, 36(5): 1152-1164.
Zhao Jia,Lai Zhizhen,Wu Runxiu,et al . Hierarchical Guided Enhanced Multi-objective Firefly Algorithm[J]. Journal of System Simulation, 2024, 36(5): 1152-1164.
表2
HGEMOFA与5种经典算法在GD上的实验结果
问题 | 指标 | HGEMOFA | MOPSO | MOEA/D | NSGAII | PESAII | MOFA |
---|---|---|---|---|---|---|---|
ZDT1 | 均值 方差 | 5.74e-05 (2.68e-5) | 8.98e-02 (2.20e-2) | 5.67e-04 (1.52e-4) | 1.67e-04 (4.83e-5) | 1.82e-04 (6.60e-5) | 5.82e-02 (2.73e-2) |
ZDT2 | 均值 方差 | 3.83e-05 (2.49e-5) | 1.16e+00 (6.51e-1) | 1.48e-03 (1.01e-3) | 1.34e-04 (3.07e-5) | 2.14e-04 (1.02e-4) | 2.96e-02 (6.49e-3) |
ZDT3 | 均值 方差 | 6.05e-05 (1.98e-3) | 1.01e-01 (3.56e-2) | 2.28e-03 (1.98e-3) | 7.84e-05 (2.51e-5) | 1.20e-04 (6.33e-5) | 3.68e-02 (2.47e-2) |
ZDT6 | 均值 方差 | 3.55e-06 (1.88e-4) | 4.45e-02 (9.13e-2) | 8.17e-04 (1.88e-4) | 3.81e-05 (1.80e-5) | 1.11e-02 (1.44e-2) | 1.88e-01 (2.42e-2) |
DTLZ1 | 均值 方差 | 6.01e-04 (1.89e-6) | 3.87e+00 (8.74e-1) | 1.36e-04 (1.89e-6) | 1.64e-04 (1.26e-4) | 3.00e-02 (8.15e-2) | 2.60e+00 (1.48e+0) |
DTLZ2 | 均值 方差 | 3.62e-04 (4.56e-7) | 4.58e-03 (1.11e-3) | 3.57e-04 (4.56e-7) | 7.63e-04 (7.62e-5) | 7.93e-04 (9.33e-5) | 4.19e-04 (2.40e-4) |
DTLZ4 | 均值 方差 | 3.54e-04 (3.53e-5) | 1.76e-02 (1.02e-2) | 3.49e-04 (3.53e-5) | 7.37e-04 (5.75e-5) | 7.85e-04 (8.25e-5) | 1.52e-03 (1.29e-3) |
DTLZ6 | 均值 方差 | 3.37e-06 (1.18e-7) | 1.54e-01 (7.17e-2) | 2.08e-03 (5.19e-3) | 3.48e-06 (9.66e-8) | 3.39e-06 (1.62e-7) | 2.89e-01 (1.96e-2) |
DTLZ7 | 均值 方差 | 1.10e-03 (3.14e-4) | 7.48e-02 (1.28e-1) | 2.38e-03 (3.14e-4) | 1.68e-03 (2.41e-4) | 1.56e-03 (3.87e-4) | 8.43e-02 (6.87e-2) |
表3
HGEMOFA与5种经典算法在SP上的实验结果
问题 | 指标 | HGEMOFA | MOPSO | MOEA/D | NSGAII | PESAII | MOFA |
---|---|---|---|---|---|---|---|
ZDT1 | 均值 方差 | 3.72e-03 (6.77e-4) | 1.23e-02 (1.66e-3) | 7.24e-03 (2.24e-3) | 7.00e-03 (6.07e-4) | 1.09e-02 (1.52e-3) | 1.25e-02 (2.02e-3) |
ZDT2 | 均值 方差 | 3.86e-03 (4.90e-4) | 7.89e-03 (1.51e-3) | 1.36e-02 (3.54e-3) | 7.06e-03 (6.91e-4) | 1.07e-02 (1.28e-3) | 1.08e-02 (6.81e-4) |
ZDT3 | 均值 方差 | 8.51e-03 (2.09e-3) | 1.38e-02 (2.87e-3) | 2.27e-02 (5.41e-3) | 7.71e-03 (7.66e-4) | 1.27e-02 (2.50e-3) | 6.57e-03 (2.35e-3) |
ZDT6 | 均值 方差 | 2.61e-03 (3.79e-4) | 3.65e-02 (4.51e-2) | 3.87e-03 (5.33e-4) | 5.99e-03 (5.20e-4) | 3.67e-02 (5.82e-2) | 6.39e-03 (5.47e-3) |
DTLZ1 | 均值 方差 | 5.26e-03 (3.28e-4) | 2.65e+00 (9.37e-1) | 1.01e-04 (1.70e-5) | 1.58e-02 (1.69e-3) | 3.81e-01 (1.26e+0) | 5.74e-02 (7.82e-2) |
DTLZ2 | 均值 方差 | 1.57e-02 (1.10e-3) | 4.28e-02 (3.84e-3) | 3.79e-02 (8.62e-6) | 3.91e-02 (2.16e-3) | 3.93e-02 (1.99e-3) | 2.53e-02 (1.09e-2) |
DTLZ4 | 均值 方差 | 1.85e-02 (1.50e-3) | 3.39e-02 (1.86e-2) | 3.47e-02 (9.44e-3) | 4.04e-02 (2.18e-3) | 4.05e-02 (1.94e-3) | 2.46e-02 (8.64e-3) |
DTLZ6 | 均值 方差 | 1.64e-03 (1.29e-4) | 8.21e-02 (6.11e-2) | 2.30e-02 (4.10e-2) | 5.58e-03 (3.11e-4) | 7.72e-03 (1.30e-3) | 1.97e-01 (1.87e-2) |
DTLZ7 | 均值 方差 | 2.89e-02 (2.43e-3) | 2.26e-02 (1.13e-2) | 1.35e-01 (1.42e-3) | 4.84e-02 (5.65e-3) | 4.41e-02 (5.41e-3) | 5.06e-02 (1.27e-2) |
表4
HGEMOFA与5种经典算法在IGD上的实验结果
问题 | 指标 | HGEMOFA | MOPSO | MOEA/D | NSGAII | PESAII | MOFA |
---|---|---|---|---|---|---|---|
ZDT1 | 均值 方差 | 3.82e-03 (6.36e-5) | 8.75e-01 (1.99e-1) | 1.12e-02 (2.15e-3) | 4.78e-03 (1.61e-4) | 1.06e-02 (1.50e-3) | 3.70e-02 (4.30e-3) |
ZDT2 | 均值 方差 | 3.86e-03 (3.66e-5) | 1.72e+00 (4.28e-1) | 2.58e-02 (3.41e-2) | 4.86e-03 (2.44e-4) | 1.16e-02 (1.91e-3) | 4.62e-02 (7.90e-3) |
ZDT3 | 均值 方差 | 5.24e-03 (4.13e-4) | 7.85e-01 (2.47e-1) | 2.95e-02 (1.20e-2) | 6.36e-03 (5.35e-3) | 2.12e-02 (2.16e-2) | 1.87e-02 (2.78e-3) |
ZDT6 | 均值 方差 | 3.09e-03 (3.98e-5) | 1.93e-01 (9.14e-1) | 6.98e-03 (1.27e-3) | 3.72e-03 (1.54e-4) | 7.41e-03 (6.12e-4) | 1.56e+00 (1.49e-1) |
DTLZ1 | 均值 方差 | 1.62e-02 (1.87e-3) | 4.46e+00 (1.87e+0) | 1.37e-02 (1.22e-5) | 1.89e-02 (6.89e-4) | 1.80e-02 (6.43e-4) | 5.21e-02 (1.63e-2) |
DTLZ2 | 均值 方差 | 3.67e-02 (1.79e-4) | 7.09e-02 (6.68e-3) | 3.63e-02 (1.92e-7) | 4.88e-02 (1.39e-3) | 4.49e-02 (8.99e-4) | 1.31e-01 (3.95e-2) |
DTLZ4 | 均值 方差 | 3.95e-02 (5.08e-4) | 1.71e-01 (1.15e-1) | 1.39e-01 (1.54e-1) | 4.82e-02 (1.39e-3) | 4.57e-02 (8.61e-4) | 1.32e-01 (1.69e-2) |
DTLZ6 | 均值 方差 | 2.04e-03 (1.13e-5) | 1.64e+00 (7.34e-1) | 2.26e-02 (4.30e-6) | 2.92e-03 (1.31e-4) | 7.71e-03 (1.46e-3) | 3.13e+00 (3.15e-1) |
DTLZ7 | 均值 方差 | 3.94e-02 (4.80e-4) | 1.48e+00 (7.08e-1) | 1.14e-01 (1.05e-3) | 5.24e-02 (2.35e-3) | 6.01e-02 (5.42e-2) | 8.45e-02 (4.38e-3) |
表7
HGEMOFA与11种MOEA在IGD上的实验结果
算法 | ZDT1 | ZDT2 | ZDT3 | ZDT6 | DTLZ1 | DTLZ2 | DTLZ4 | DTLZ6 | DTLZ7 |
---|---|---|---|---|---|---|---|---|---|
HGEMOFA | 3.82e-03 | 3.87e-03 | 5.24e-03 | 3.10e-03 | 1.62e-02 | 3.67e-02 | 3.96e-02 | 2.04e-03 | 3.95e-02 |
CMOPSO | 4.21e-03 | 4.12e-03 | 4.64e-03 | 3.10e-03 | 7.57e-01 | 3.97e-02 | 4.12e-02 | 2.09e-03 | 5.23e-02 |
NMPSO | 2.79e-02 | 1.92e-02 | 1.01e-01 | 4.41e-03 | 1.69e-02 | 5.67e-02 | 1.06e-01 | 1.29e-02 | 4.58e-02 |
NSLS | 2.43e-01 | 4.49e-01 | 2.17e-01 | 5.89e-03 | 1.54e-01 | 3.79e-02 | 1.48e-01 | 2.19e-03 | 8.58e-02 |
CFMOFA | 8.79e-03 | 1.31e-02 | 1.45e-02 | 9.77e-02 | 1.56e+02 | 6.01e-02 | 9.10e-02 | 5.65e-01 | 5.59e-02 |
RVEAiGNG | 4.07e-03 | 4.14e-03 | 7.80e-03 | 3.28e-03 | 1.44e-02 | 4.00e-02 | 3.97e-02 | 2.32e-03 | 5.00e-02 |
MMOPSO | 4.91e-03 | 5.03e-03 | 5.41e-03 | 4.29e-03 | 2.82e-02 | 4.93e-02 | 4.88e-02 | 3.37e-03 | 9.42e-02 |
SMPSO | 4.95e-03 | 4.96e-03 | 5.37e-03 | 3.86e-03 | 1.27e+00 | 4.86e-02 | 2.54e-01 | 2.64e-03 | 8.82e-02 |
NSGAIISDR | 6.92e-03 | 5.23e-03 | 1.38e-02 | 4.40e-03 | 1.84e-02 | 4.35e-01 | 3.87e-01 | 3.40e-02 | 5.97e-02 |
MOPSOCD | 4.00e-03 | 4.11e-03 | 4.75e-03 | 3.39e-03 | 1.19e+01 | 4.83e-02 | 1.18e-01 | 2.63e-03 | 5.73e-02 |
dMOPSO | 1.52e-02 | 1.33e-01 | 1.66e-02 | 3.22e-03 | 1.45e+00 | 9.03e-02 | 2.39e-01 | 2.25e-02 | 1.00e-01 |
MOEAPSL | 4.62e-03 | 4.75e-03 | 6.27e-03 | 3.62e-03 | 1.97e-02 | 5.04e-02 | 4.91e-02 | 2.66e-03 | 5.43e-02 |
表9
算法策略分析在IGD上的实验结果
问题 | MOFA | MOFA+S1 | MOFA+S2 | MOFA+S1+S2 | MOFA+S2+S3 | HGEMOFA |
---|---|---|---|---|---|---|
ZDT1 | 3.70e-02 | 7.36e-03 | 6.08e-03 | 5.98e-03 | 4.19e-03 | 3.82e-03 |
ZDT2 | 4.62e-02 | 7.47e-03 | 6.35e-03 | 6.11e-03 | 4.19e-03 | 3.86e-03 |
ZDT3 | 1.87e-02 | 1.14e-02 | 7.12e-03 | 7.07e-03 | 5.89e-03 | 5.24e-03 |
ZDT6 | 1.56e+0 | 6.80e-03 | 5.93e-03 | 5.79e-03 | 3.47e-03 | 3.09e-03 |
DTLZ1 | 5.21e-02 | 2.47e-01 | 3.31e-02 | 2.64e-02 | 2.05e-02 | 1.62e-02 |
DTLZ2 | 1.30e-01 | 5.19e-02 | 5.11e-02 | 5.08e-02 | 4.10e-02 | 3.67e-02 |
DTLZ4 | 1.32e-01 | 6.30e-02 | 4.94e-02 | 4.86e-02 | 4.22e-02 | 3.95e-02 |
DTLZ6 | 3.13e+00 | 3.92e-03 | 3.27e-03 | 3.34e-03 | 2.35e-03 | 2.04e-03 |
DTLZ7 | 8.45e-02 | 5.92e-02 | 5.37e-02 | 5.33e-02 | 4.22e-02 | 3.94e-02 |
1 | Farag M A, El-Shorbagy M A, Mousa A A, et al. A New Hybrid Metaheuristic Algorithm for Multiobjective Optimization Problems[J]. International Journal of Computational Intelligence Systems, 2020, 13(1): 920-940. |
2 | Meghwani Suraj S, Thakur Manoj. Adaptively Weighted Decomposition Based Multi-objective Evolutionary Algorithm[J]. Applied Intelligence, 2021, 51(6): 3801-3823. |
3 | Barocio Emilio, Regalado Jose, Cuevas Erick, et al. Modified Bio-inspired Optimisation Algorithm with a Centroid Decision Making Approach for Solving a Multi-objective Optimal Power Flow Problem[J]. IET Generation, Transmission & Distribution, 2017, 11(4): 1012-1022. |
4 | Liagkouras K, Metaxiotis K. Enhancing the Performance of MOEAs: An Experimental Presentation of a New Fitness Guided Mutation Operator[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2017, 29(1): 91-131. |
5 | 程鹏宇, 赵嘉, 韩龙哲, 等. 双向多尺度LSTM的短时温度预测[J]. 江西师范大学学报(自然科学版), 2022, 46(2): 134-139. |
Cheng Pengyu, Zhao Jia, Han Longzhe, et al. The Short-term Temperature Prediction Based on Bidirectional Multi-scale LSTM[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2022, 46(2): 134-139. | |
6 | Khan A, Baig A R. Multi-objective Feature Subset Selection Using Non-dominated Sorting Genetic Algorithm[J]. Journal of Applied Research and Technology, 2015, 13(1): 145-159. |
7 | Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
8 | Deb K, Jain Himanshu. An Evolutionary Many-objective Optimization Algorithm Using Reference-point-based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. |
9 | Christian von Lücken, Barán Benjamín, Brizuela Carlos. A Survey on Multi-objective Evolutionary Algorithms for Many-objective Problems[J]. Computational Optimization and Applications, 2014, 58(3): 707-756. |
10 | Zhang Qingfu, Li Hui. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. |
11 | Li Hui, Zhang Qingfu. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302. |
12 | Liu Ruochen, Zhou Runan, Ren Rui, et al. Multi-layer Interaction Preference Based Multi-objective Evolutionary Algorithm Through Decomposition[J]. Information Sciences, 2020, 509: 420-436. |
13 | Basseur M, Liefooghe A, Le K, et al. The Efficiency of Indicator-based Local Search for Multi-objective Combinatorial Optimisation Problems[J]. Journal of Heuristics, 2012, 18(2): 263-296. |
14 | Bader Johannes, Zitzler Eckart. Hype: An Algorithm for Fast Hypervolume-based Many-objective Optimization[J]. Evolutionary Computation, 2011, 19(1): 45-76. |
15 | Coello C A C, Pulido G T, Lechuga M S. Handling Multiple Objectives with Particle Swarm Optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. |
16 | Mirjalili Seyedali, Saremi Shahrzad, Seyed Mohammad Mirjalili, et al. Multi-objective Grey Wolf Optimizer: A Novel Algorithm for Multi-criterion Optimization[J]. Expert Systems with Applications, 2016, 47: 106-119. |
17 | 赵嘉, 谢智峰, 吕莉, 等. 深度学习萤火虫算法[J]. 电子学报, 2018, 46(11): 2633-2641. |
Zhao Jia, Xie Zhifeng, Li Lü, et al. Firefly Algorithm with Deep Learning[J]. Acta Electronica Sinica, 2018, 46(11): 2633-2641. | |
18 | Yang Xinshe. Multiobjective Firefly Algorithm for Continuous Optimization[J]. Engineering with Computers, 2013, 29(2): 175-184. |
19 | Tsai C W, Huang Yaoting, Chiang M C. A Non-dominated Sorting Firefly Algorithm for Multi-objective Optimization[C]//2014 14th International Conference on Intelligent Systems Design and Applications. Piscataway, NJ, USA: IEEE, 2014: 62-67. |
20 | 谢承旺, 肖驰, 丁立新, 等. HMOFA: 一种混合型多目标萤火虫算法[J]. 软件学报, 2018, 29(4): 1143-1162. |
Xie Chengwang, Xiao Chi, Ding Lixin, et al. HMOFA: A Hybrid Multi-objective Firefly Algorithm[J]. Journal of Software, 2018, 29(4): 1143-1162. | |
21 | Li Lü, Zhao Jia, Wang Jiayuan, et al. Multi-objective Firefly Algorithm Based on Compensation Factor and Elite Learning[J]. Future Generation Computer Systems, 2019, 91: 37-47. |
22 | 赵嘉, 陈丹丹, 肖人彬, 等. 一种基于最大最小策略和非均匀变异的萤火虫算法[J]. 智能系统学报, 2022, 17(1): 116-130. |
Zhao Jia, Chen Dandan, Xiao Renbin, et al. A Heterogeneous Variation Firefly Algorithm with Maximin Strategy[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 116-130. | |
23 | Fogedby H C. Lévy Flights in Random Environments[J]. Physical Review Letters, 1994, 73(19): 2517. |
24 | 郑树泉. 工业智能技术与应用[M]. 上海: 上海科学技术出版社, 2019: 250-251. |
25 | Zhang Xingyi, Zheng Xiutao, Cheng Ran, et al. A Competitive Mechanism Based Multi-objective Particle Swarm Optimizer with Fast Convergence[J]. Information Sciences, 2018, 427: 63-76. |
26 | Zitzler Eckart, Deb Kalyanmoy, Thiele Lothar. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2): 173-195. |
27 | Deb K, Thiele L, Laumanns M, et al. Scalable Multi-objective Optimization Test Problems[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2002: 825-830. |
28 | Gadhvi Bhargav, Savsani Vimal, Patel Vivek. Multi-objective Optimization of Vehicle Passive Suspension System Using NSGA-II, SPEA2 and PESA-II[J]. Procedia Technology, 2016, 23: 361-368. |
29 | Tian Ye, Cheng Ran, Zhang Xingyi, et al. PlatEMO: A MATLAB Platform for Evolutionary Multi-objective Optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. |
30 | Zheng Liming, Wang Qiang, Zhang Shengxin, et al. Population Recombination Strategies for Multi-objective Particle Swarm Optimization[J]. Soft Computing, 2017, 21(16): 4693-4705. |
31 | Schott J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization[D]. Cambridge: Massachusetts Institute of Technology, 1995. |
32 | A Coello Coello Carlos, Nareli Cruz Cortés. Solving Multiobjective Optimization Problems Using an Artificial Immune System[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190. |
33 | Lin Qiuzhen, Liu Songbai, Zhu Qingling, et al. Particle Swarm Optimization with a Balanceable Fitness Estimation for Many-objective Optimization Problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 32-46. |
34 | Liu Qiqi, Jin Yaochu, Heiderich M, et al. An Adaptive Reference Vector-guided Evolutionary Algorithm Using Growing Neural Gas for Many-objective Optimization of Irregular Problems[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 2698-2711. |
35 | Lin Qiuzhen, Li Jianqiang, Du Zhihua, et al. A Novel Multi-objective Particle Swarm Optimization with Multiple Search Strategies[J]. European Journal of Operational Research, 2015, 247(3): 732-744. |
36 | Nebro A J, Durillo J J, Garcia-Nieto J, et al. SMPSO: A New PSO-based Metaheuristic for Multi-objective Optimization[C]//2009 IEEE Symposium on Computational Intelligence in Multi-criteria Decision-making(MCDM). Piscataway, NJ, USA: IEEE, 2009: 66-73. |
37 | Tian Ye, Cheng Ran, Zhang Xingyi, et al. A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 331-345. |
38 | Raquel Carlo R, Naval Prospero C. An Effective Use of Crowding Distance in Multiobjective Particle Swarm Optimization[C]//Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2005: 257-264. |
39 | Chen Bili, Zeng Wenhua, Lin Yangbin, et al. A New Local Search-based Multiobjective Optimization Algorithm[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(1): 50-73. |
40 | Saúl Zapotecas Martínez, A Coello Coello Carlos. A Multi-objective Particle Swarm Optimizer Based on Decomposition[C]//Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2011: 69-76. |
41 | Tian Ye, Lu Chang, Zhang Xingyi, et al. Solving Large-scale Multiobjective Optimization Problems with Sparse Optimal Solutions via Unsupervised Neural Networks[J]. IEEE Transactions on Cybernetics, 2021, 51(6): 3115-3128. |
[1] | 邓明君, 胡辛瑕, 李响, 徐丽萍. 基于车速引导和感应控制的干线协调优化方法[J]. 系统仿真学报, 2024, 36(6): 1309-1321. |
[2] | 温廷新, 关婷誉. 考虑能耗和运输的有限缓冲区混合流水车间调度[J]. 系统仿真学报, 2024, 36(6): 1344-1358. |
[3] | 王昱博, 胡成玉, 龚文引. 基于帕累托前沿关系求解约束多目标优化问题[J]. 系统仿真学报, 2024, 36(4): 901-914. |
[4] | 曾少达, 刘海林. 5G室内分布系统规划建模及优化算法[J]. 系统仿真学报, 2024, 36(3): 659-672. |
[5] | 刘野, 吉卫喜, 苏璇, 赵宏轩. 多约束下矩形件排样问题的混合求解算法研究[J]. 系统仿真学报, 2024, 36(3): 743-755. |
[6] | 安靖, 司光亚, 曾妙婷. 模型与数据混合驱动的代理模型构建方法研究[J]. 系统仿真学报, 2024, 36(3): 756-769. |
[7] | 王辉, 彭乐. 改进多目标蜂群算法优化洗出运动及仿真实验[J]. 系统仿真学报, 2024, 36(2): 436-448. |
[8] | 钟麟, 佟明安, 李盛. 特定多任务下飞机航迹规划研究[J]. 系统仿真学报, 2023, 35(9): 1909-1917. |
[9] | 张立, 贺明玲, 尹秋霜, 李宁, 余乐安. 不确定条件下多周期应急物资配送优化研究[J]. 系统仿真学报, 2023, 35(8): 1669-1680. |
[10] | 曹梦龙, 赵文彬, 陈志强. 融合粒子群算法与改进灰狼算法的机器人路径规划[J]. 系统仿真学报, 2023, 35(8): 1768-1775. |
[11] | 邓佳欣, 张达敏, 何庆, 赵建萍. 结合莱维飞行和布朗运动的金鹰算法[J]. 系统仿真学报, 2023, 35(6): 1290-1307. |
[12] | 余佳英, 张宏立, 董颖超. 基于离散状态转移算法的无等待流水车间调度研究[J]. 系统仿真学报, 2023, 35(5): 1034-1045. |
[13] | 胡蓉, 丁帅, 钱斌, 张长胜. 超启发式三维EDA求解绿色双边装配线平衡问题[J]. 系统仿真学报, 2023, 35(3): 454-469. |
[14] | 王旭, 季伟东, 周国辉, 杨佳慧. 基于多指标精英个体博弈机制的多目标优化算法[J]. 系统仿真学报, 2023, 35(3): 494-514. |
[15] | 张朝阳, 徐莉萍, 李健, 赵义豪, 何奎. 基于改进狼群算法的柔性作业车间调度研究[J]. 系统仿真学报, 2023, 35(3): 534-543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||