系统仿真学报 ›› 2023, Vol. 35 ›› Issue (3): 435-453.doi: 10.16182/j.issn1004731x.joss.22-1507

• •    下一篇

学习流体仿真中的高效长时序运动预测

  

  1. 1.清华大学 电子工程系,北京 100084
    2.北京科技大学 计算机与通信工程学院,北京 100083
  • 出版日期:2023-03-30 发布日期:2023-03-22

Learning-Based High-Performance Algorithm for Long-Term Motion Prediction of Fluid Flows

Jingyuan Zhu1(), Huimin Ma2(), Jian Yuan1   

  1. 1.Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    2.School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Online:2023-03-30 Published:2023-03-22
  • Contact: Huimin Ma E-mail:jy-zhu20@mails.tsinghua.edu.cn;mhmpub@ustb.edu.cn
  • About author:Zhu Jingyuan(1999-), male, Manchu, doctoral student, research area:computer graphics and computer vision. E-mail:jy-zhu20@mails.tsinghua.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U20B2062)

摘要:

快速准确的进行流体仿真是一个具有挑战性的任务,基于传统方法的流体仿真需要消耗大量的计算资源以获得准确的结果。深度学习方法快速发展,为基于数据的流体仿真和生成提供了可能。提出一种基于单帧的浓度场和一个序列的先验速度场的长时序流体仿真运动预测算法。这一模型专注于将通过神经网络预测的速度和密度场基于纳维-斯托克斯方程获得的仿真数据在宏观尺度上进行匹配。通过使用基于全卷积U型网络的自动编码器和基于LSTM网络的时序预测子网络,本文模型在时间演化过程中更好地保持了视觉宏观相似性,并实现了显著的计算速度提升。本文方法实现了对流体场演化的宏观分布的准确和快速的长时序运动预测。在一系列二维和三维的仿真数据的基准测试上证明了本文算法的有效性和高效性。

关键词: 运动预测, 流体, 长时序, 高效, 学习算法

Abstract:

Simulating the dynamics of fluid flows accurately and efficiently remains a challenging task nowadays, and traditional fluid simulation methods consume large computational resources to obtain accurate results. Deep learning methods have developed rapidly, which makes data-based fluid simulation and generation possible. In this paper, a motion prediction algorithm for long-term fluid simulation is proposed, which is based on a density field with a single frame and a previous velocity field of a sequence. The model focuses on matching the velocity and density fields predicted by the neural network with the simulated data based on the Navier-Stokes equation at a macroscopic level. With the help of fully convolutional U-Net-based autoencoders and LSTM-based time series prediction subnetworks, the model better maintains the visual macroscopic similarity during temporal evolutions and significantly improves computation speed. As a result, the proposed method achieves accurate and rapid long-term motion prediction for the macroscopic distributions of flow field evolution. In addition, the paper demonstrates the effectiveness and efficiency of the proposed algorithm on a series of benchmark tests based on two-dimensional (2D) and three-dimension (3D) simulation data.

Key words: motion prediction, fluid flow, long-term, high-performance, learning algorithm

中图分类号: