系统仿真学报 ›› 2022, Vol. 34 ›› Issue (7): 1639-1650.doi: 10.16182/j.issn1004731x.joss.21-0175
收稿日期:
2021-03-07
修回日期:
2021-06-09
出版日期:
2022-07-30
发布日期:
2022-07-20
通讯作者:
李康顺
E-mail:928753616@qq.com;likangshun@sina.com
作者简介:
聂慧(1987-),女,硕士,讲师,研究方向为图像处理,机器学习。E-mail:928753616@qq.com
基金资助:
Hui Nie1,2(), Kangshun Li1,2,3(
), Yang Su1
Received:
2021-03-07
Revised:
2021-06-09
Online:
2022-07-30
Published:
2022-07-20
Contact:
Kangshun Li
E-mail:928753616@qq.com;likangshun@sina.com
摘要:
深度神经网络因参数量过多而影响嵌入式部署,解决的办法之一是模型小型化(如模型量化,知识蒸馏等)。针对这一问题,提出了一种基于BN(batch normg lization)折叠的量化因子自适应学习的量化训练算法(简称为LSQ-BN算法)。采用单个CNN(convolutional neural)构造BN折叠以实现BN与CNN融合;在量化训练过程中,将量化因子设置成模型参数;提出了一种自适应量化因子初始化方案以解决量化因子难以初始化的问题。实验结果表明:8bit的权重和激活量化,量化模型的精度与FP32预制模型几乎一致;4bit的权重量化和8 bit的激活量化,量化模型的精度损失在3%以内。因此,LSQ-BN是一种优异的模型量化算法。
中图分类号:
聂慧, 李康顺, 苏洋. 一种量化因子自适应学习量化训练算法[J]. 系统仿真学报, 2022, 34(7): 1639-1650.
Hui Nie, Kangshun Li, Yang Su. A Quantization Training Algorithm of Adaptive Learning Quantization Scale Fators[J]. Journal of System Simulation, 2022, 34(7): 1639-1650.
1 | Zhang L, Li K, Qi Y, et al. Local Feature Extracted by the Improved Bag of Features Method for Person re-Identification[J]. Neurocomputing (S0925-2312), 2021, 458: 690-700. |
2 | Tan Zhiping, Li Kangshun, Wang Yi. Differential Evolution with Adaptive Mutation Strategy Based on Fitness Landscape Analysis[J]. Information Sciences(S0020-0255), 2021,549:142-163. |
3 | 阴敬方, 朱登明, 石敏, 等. 基于引导对抗网络的人体深度图像修补方法[J]. 系统仿真学报, 2020,32(7): 1312-1321. |
Yin Jingfang, Zhu Dengming, Shi Min, et al. Human Depth Image Repairing Method Based on Guided adversation Network[J]. Journal of System Simulation, 2020, 32(7): 1312-1321. | |
4 | 黄欣, 方钰, 顾梦丹. 基于卷积神经网络的X线胸片疾病分类研究[J]. 系统仿真学报, 2020, 32(6): 1188-1194. |
Huang Xin, Fang Yu, Gu Mengdan. Study on Disease Classification of X-chest Radiographs based on Convolutional Neural Network[J].Journal of System Simulation, 2020, 32(6): 1188-1194. | |
5 | Jacob B, Kligys S, Chen B, et al. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-only Inference[C]// IEEE Conference on Computer Vision and Pattern recognition Salt Bake City, USA: IEEE, 2018: 2704-2713. |
6 | Banner Ron, Nahshan Yury, Soudry Daniel. Post Training 4-bit Quantization of Convolutional Networks for Rapid-Deployment[C]// Neural Information Processing Systems(NeurIPS).Vancouver: IEEE Press,2019: 7950-7958. |
7 | Mishchenko Yuriy, Goren Yusuf, Ming Sun, et al. Low-Bit Quantization and Quantization-Aware Training for Small-Footprint Keyword Spotting[C]// International Conference On Machine Learning And Applications (ICMLA). Florida: IEEE Press, 2019: 706-711. |
8 | Zhang Xiangyu, Zhou Xinyu, Lin Mengxiao, et al.ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices [C]// Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE Press, 2018: 6848-6856. |
9 | Yin Penghang, Zhang Shuai, Jiancheng Lyuet al. BinaryRelax: A Relaxation Approach for Training Deep Neural Networks with Quantized Weights[J]. SIAM Journal on Imaging Sciences (S1936-494), 2018, 11(4): 2205-2223. |
10 | Cao Z, Long M, Wang J, et al. Hashnet: Deep Learning to Hash by Continuation[C]// International Conference on computer vision. Venice, Italy: IEEE Press, 2017: 5608-5617. |
11 | Nagel Markus, van Baalen Mart, Blankevoort Tijmen, et al. Data-Free Quantization Through Weight Equalization and Bias Correction [C]// International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE Press, 2019: 1325-1334. |
12 | Esser Steven K., McKinstry Jeffrey L., Bablani Deepika, et al. Learned Step Size Quantization[C]// International Conference on Learning Representations (ICLR).Ethiopia, Africa: IEEE Press, 2020: 1-12. |
13 | Bhalgat Y, Lee J, Nagel M, et al. Lsq+: Improving low-bit quantization through learnable offsets and better initialization[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE/CVF Press, 2020: 696-697. |
14 | Jain S, Gural A, Wu M, et al. Trained Quantization Thresholds for Accurate and Efficient Fixed-point Inference of Deep Neural Networks[J]. Machine Learning and Systems (S1002-137X), 2020, 2: 112-128. |
15 | Cai Zhaowei, He Xiaodong, Jian Sun, et al. Deep Learning With Low Precision by Half-Wave Gaussian Quantization[C]// Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE Press, 2017:5918-5926. |
16 | Choi Jungwook, Venkataramani Swagath, Vijayalakshmi (Viji) Srinivasan, et al. Accurate and Efficient 2-bit Quantized Neural Networks[J]. Proceedings of Machine Learning and Systems (S1002-137X), 2019, 1: 348-359. |
17 | Ioffe S, Szegedy C. Batch normalization: Accelerating Deep Network Training by Reducing Internal Covariate shift[C]// International Conference on Machine Learning. PMLR, Miami, Horida, USA: IEEE, 2015: 448-456. |
18 | Chmiel B, Banner R, Shomron G, et al. Robust Quantization: One Model to Rule Them All[M]. Vancouver: Advances in Neural Information Processing Systems, 2020: 5308-5317. |
19 | Debnath Bappaditya, O'Brien Mary, Yamaguchi Motonori, et al. Adapting MobileNets for Mobile Based Upper Body Pose Estimation[C]// Advanced Video and Signal Based Surveillance (AVSS). Auckland, Auckland: IEEE Press, 2018: 1-6. |
20 | Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted Residuals and Linear Bottlenecks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA: IEEE, 2018: 4510-4520. |
21 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Computer Vision and Pattern Recognition. Las vegas, USA: IEEE Press, 2016: 770-778. |
[1] | 邸彦强, 李婷, 冯少冲, 刘琼瑶, 吕建红, 陈志佳, 张阳, 曹朋飞. 云边端架构的装备精确维修平行仿真系统[J]. 系统仿真学报, 2022, 34(09): 1909-1919. |
[2] | 李铭浩, 毕文豪, 张安, 孙文轩. 穿透性制空下无人飞行器发射母机作战体系及关键技术[J]. 系统仿真学报, 2022, 34(9): 1920-1932. |
[3] | 傅妍芳, 张楠, 魏佳宁, 曲少春, 卢颖, 刘畅. 基于OPNET的机群数据链混合TDMA协议仿真[J]. 系统仿真学报, 2022, 34(9): 1933-1940. |
[4] | 罗俊仁, 张万鹏, 袁唯淋, 胡振震, 陈少飞, 陈璟. 面向多智能体博弈对抗的对手建模框架[J]. 系统仿真学报, 2022, 34(9): 1941-1955. |
[5] | 周维, 刘宇翔, 廖广平, 马鑫. 结合交并比损失的孪生网络目标跟踪算法研究[J]. 系统仿真学报, 2022, 34(9): 1956-1967. |
[6] | 陈发堂, 李贺宾, 张志豪, 梅志强. 基于相对残差的LDPC码动态调度译码算法[J]. 系统仿真学报, 2022, 34(9): 1968-1975. |
[7] | 张洪亮, 丁仁曼, 徐公杰. 考虑区间工时的多目标柔性作业车间节能调度[J]. 系统仿真学报, 2022, 34(9): 1976-1987. |
[8] | 张莉, 张惠珍, 刘冬, 陆雨欣. 考虑紧迫度的应急物资调度及粒子群算法求解[J]. 系统仿真学报, 2022, 34(9): 1988-1998. |
[9] | 祁启明, 傅瑞罡, 王平, 汪敏, 范红旗. 面向小型航空器应用的光学复眼仿真软件设计[J]. 系统仿真学报, 2022, 34(9): 1999-2008. |
[10] | 郭业才, 王庆伟. 基于截断迁移与并行残差网络的调制识别算法[J]. 系统仿真学报, 2022, 34(9): 2009-2018. |
[11] | 朱依婷, 闫云, 何兆成. 公交与社会车辆混合的中观交通建模与仿真[J]. 系统仿真学报, 2022, 34(9): 2019-2027. |
[12] | 仝卫国, 曾世超, 张立峰, 侯哲, 郭佳跃. 基于深度残差神经网络的电阻层析成像及流型辨识方法[J]. 系统仿真学报, 2022, 34(9): 2028-2036. |
[13] | 李成兵, 李云飞, 吴鹏. 考虑时间特性的城市群客运网络抗毁性研究[J]. 系统仿真学报, 2022, 34(9): 2037-2045. |
[14] | 刘高辉, 梁颖. 基于双稳阱内随机共振的OFDM信号检测方法研究[J]. 系统仿真学报, 2022, 34(9): 2046-2055. |
[15] | 盛俊杰, 唐兆, 董少迪, 吴舒扬, 梁浩. 铁道车辆动力学云平台架构设计及原型验证[J]. 系统仿真学报, 2022, 34(9): 2056-2064. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||