系统仿真学报 ›› 2018, Vol. 30 ›› Issue (12): 4513-4519.doi: 10.16182/j.issn1004731x.joss.201812003
高荣华1,2,3,4, 李奇峰1,2,3,4, 顾静秋1,2,3,4, 孙想1,2,3,4
收稿日期:2018-06-28
修回日期:2018-07-03
出版日期:2018-12-10
发布日期:2019-01-03
Gao Ronghua1,2,3,4, Li Qifeng1,2,3,4, Gu Jingqiu1,2,3,4, Sun Xiang1,2,3,4
Received:2018-06-28
Revised:2018-07-03
Online:2018-12-10
Published:2019-01-03
About author:Gao Ronghua (1977-), female, Cangzhou, Hebei, China, doctor, associate researcher, research direction is decision making for agricultural multimedia information technology and big data analysis.
Supported by:摘要: 作物病害表现在叶片形态上,且外观和内部结构发生变化,生长环境也对病害有一定的影响。将生长环境、叶RGB图像和光谱图像融合,研究并提出一种作物光谱图像相关模型的时空信息挖掘方法,从时间维度、空间维度和光谱维度分析作物病害的光谱反射特征与作物发育、健康状况和生长条件的相关性,建立典型病害特征模型。实验结果表明,图像处理和光谱成像技术的融合方法可以在疾病的早期阶段实现快速、准确和无损诊断。
中图分类号:
高荣华,李奇峰,顾静秋等 . 基于时空信息的作物光谱图像相关模型挖掘方法[J]. 系统仿真学报, 2018, 30(12): 4513-4519.
Gao Ronghua,Li Qifeng,Gu Jingqiu,et al . Mining Method of Crop Spectral and Image Correlation ModelBased on Spatio-Temporal Information[J]. Journal of System Simulation, 2018, 30(12): 4513-4519.
| [1] Jackman P, Gray A J G, Brass A, et al. Processing Online Crop Disease Warning Information via Sensor Networks using ISA Ontologies[J]. Agricultural Engineering International Cigr Journal (S1682-1130), 2013, 15(2): 243-251. [2] Mao H, Zhang Y, Hu B.Segmentation of Crop Disease Leaf Images using Fuzzy C-Means Clustering Algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (S1002-6819), 2008, 24(9): 136-140. [3] Yang K, Chen Y, Guo D, et al.Spectral Analysis and Information Extraction of Crop Disease by Multi-temporal Hyperspectral Images[J]. Proceedings of SPIE - The International Society for Optical Engineering (S0277-786X), 2006, 6419(4): 281-289. [4] Wang K, Zhu D Z, Zhang D Y, et al.Advance of The Imaging Spectral Technique in Diagnosis of the Information of Crop[J]. Spectroscopy & Spectral Analysis (S1000-0593), 2011, 31(3): 589. [5] Balasubramaniam P, Ananthi V P.Segmentation of Nutrient Deficiency in Incomplete Crop Images using Intuitionistic Fuzzy C-means Clustering Algorithm[J]. Nonlinear Dynamics (0924-090X), 2016, 83(1-2): 849-866. [6] Sivakumar A, Michael S M, Khemani D, et al. Soil Nutrient Analysis by Image Processing of Chormatograms through CBR Techniques of Knowledge Management [J]. Australian Journal of Experimental Biology & Medical Science (S1440-1711), 2008, 62(6)(12): 779-780. [7] Wijekoon C P, Goodwin P H, Hsiang T.Quantifying Fungal Infection of Plant Leaves by Digital Image Analysis using Scion Image Software[J]. Journal of Microbiological Methods (S0167-7012), 2008, 74(2-3): 94-101. [8] Shanwen Zhang, Xiaowei Wu, Zhuhong You, et al.Leaf Image Based Cucumber Disease Recognition using Sparse Representation Classification[J]. Computers and Electronics in Agriculture (S0168-1699), 2017, 134(5): 135-141. [9] Vogels M F A, Jong S M D, Sterk G, et al. Agricultural Cropland Mapping using Black-and-white Aerial Photography, Object-Based Image Analysis and Random Forests[J]. International Journal of Applied Earth Observation & Geoinformation (S0303-2434), 2017, 54(4): 114-123. [10] Mohanty S P, Hughes D P, Marcel S.Using Deep Learning for Image-Based Plant Disease Detection[J]. Frontiers in Plant Science (S1664-462X), 2016, 13(6): 7-8. [11] Malthus T J, Maderia A C.High Resolution Spectro Radiometry :Spectral Reflectance of Field Bean Leaves Infected by Botryt is Fabae[J]. Remote Sensing of Environ (S0034-4257), 1993, 45(2): 107-116 [12] Adams M L, Philpot W D, Norvell W A, et al.Yellowness Index: An Application of Spectral Second Derivatives to Estimate Chlorosis of Leaves in Stressed Vegetation[J]. International Journal of Remote Sensing (S0143-1161), 1999, 20(18): 3663-3675 [13] Muir Y, Porteous R L, Wastie R L.Experiments in the Detection of Incipient Diseases in Potato Tubers by Optical Methods[J]. Journal of Agricultural Engineering Research (S0021-8634), 1982, 27(2): 131-138. [14] Wu Shuwen, Wang Renchao, et al.Effects of Rice Leaf Blaston Spectrum Reflectance of Rice[J]. Journal of Shanghai Jiao tong University (Agricultural Science)(S1006-2467), 2002, 20(1): 73-76 [15] Cao Xueren, Zhou Yi, Duan Xiayu, et al.Relationships between Canopy Reflectance and Chlorophyll Contents of Wheat Infected with Powdery Mildew in Fields[J]. Acta Phytoptathologica Sinica (S0412-0914), 2009, 39(3): 290-296. |
| [1] | 黄涛, 张智, 丁玉杰, 陈艳波, 王晶, 张文倩. 考虑动态频率安全与N-k故障的鲁棒应急调度方法[J]. 系统仿真学报, 2025, 37(12): 2981-2993. |
| [2] | 张润昭, 陈艳波, 黄涛, 田昊欣, 强涂奔, 张智. 基于异构负荷特征解析预测的虚拟电厂调度方法[J]. 系统仿真学报, 2025, 37(12): 2994-3006. |
| [3] | 于祥星, 赵艳东, 张宝琳. 基于电涡流NES的海上风机塔架振动控制[J]. 系统仿真学报, 2025, 37(12): 3007-3017. |
| [4] | 李斌, 王于绰. 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 彭艺, 雷云揆, 杨青青, 李辉, 王健明. 改进PID搜索算法的山地环境无人机路径规划[J]. 系统仿真学报, 2025, 37(12): 3075-3086. |
| [7] | 伍枢珩, 刘永奎, 张霖, 肖莹莹, 王力翚. 基于改进YOLOv8的轻量级装配工件检测算法[J]. 系统仿真学报, 2025, 37(12): 3099-3111. |
| [8] | 陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生. 基于启发式的人-大模型协作寻源方法[J]. 系统仿真学报, 2025, 37(12): 3112-3127. |
| [9] | 任亮, 周泽榕, 马云峰. “货到人”系统订单拣选和分拣协同优化问题[J]. 系统仿真学报, 2025, 37(12): 3128-3139. |
| [10] | 索婧怡, 卢柏宏, 屈澈. 影视LED光源光强分布测定及其在游戏引擎中的仿真研究[J]. 系统仿真学报, 2025, 37(12): 3140-3151. |
| [11] | 龚建兴, 胡海, 任海慧, 吴瑞祥. 面向虚实结合的军事训练系统互操作模型与运用[J]. 系统仿真学报, 2025, 37(12): 3161-3175. |
| [12] | 徐智霞, 王蕊, 孙楠, 何兵, 沈晓卫, 朱晓菲. 基于改进遗传算法的协同干扰资源分配问题研究[J]. 系统仿真学报, 2025, 37(12): 3176-3189. |
| [13] | 刘翔, 金乾坤. 基于PAC-Bayes的多目标强化学习A2C算法研究[J]. 系统仿真学报, 2025, 37(12): 3212-3223. |
| [14] | 杨兰英, 李超, 邹海锋, 万江涛, 张仁强, 刘惠, 卢宏. 基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J]. 系统仿真学报, 2025, 37(11): 2956-2965. |
| [15] | 苏筱婷, 张小威, 田义, 李奇, 王帅豪. 星光导航动态仿真场景时序设计方法研究[J]. 系统仿真学报, 2025, 37(11): 2946-2955. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||