Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (3): 607-622.doi: 10.16182/j.issn1004731x.joss.23-1313
• Papers • Previous Articles
Chen Jing, Yang Guowei, Zhang Zhaochong, Wang Wei
Received:2023-11-01
															
							
																	Revised:2023-11-26
															
							
															
							
																	Online:2025-03-17
															
							
																	Published:2025-03-21
															
						Contact:
								Yang Guowei   
																					CLC Number:
Chen Jing, Yang Guowei, Zhang Zhaochong, Wang Wei. City Regional Traffic Flow Prediction Based on Spatiotemporal Multi-view Attention Residual Network[J]. Journal of System Simulation, 2025, 37(3): 607-622.
Table 1
Description of TaxiBJ and BikeNYC
| 数据集 | TaxiBJ | BikeNYC | |
|---|---|---|---|
| 交通流 | 数据类型 | 出租车GPS数据 | 单车租赁数据 | 
| 时间范围 | 2013-07-01—10-30 | 2014-04-01—09-30 | |
| 2014-03-01—06-30 | |||
| 2015-03-01—06-30 | |||
| 2015-11-01—2016-04-10 | |||
| 时间间隔/min | 30 | 60 | |
| 网格尺寸 | (32, 32) | (16, 8) | |
| 时间间隔总数 | 22 459 | 4 392 | |
| 出租车/自行车数量 | 34 000+ | 6 800+ | |
外部因素  | 假期 | 41种节假日 | 20 | 
| 天气状况 | 16种天气类型 | / | |
| 温度/℃ | [ | / | |
| 风速/mph | [0,48.6] | / | 
Table 3
Comparison of model prediction results
| 模型 | TaxiBJ | BikeNYC | ||
|---|---|---|---|---|
| RMSE | MAE | RMSE | MAE | |
| HA | 45.36 | 22.47 | 20.33 | 10.22 | 
| ARIMA | 22.78 | 12.72 | 10.22 | 5.36 | 
| CNN+LSTM | 17.29 | 9.87 | 5.09 | 2.61 | 
| GCN+LSTM | 16.79 | 9.84 | 5.28 | 2.73 | 
| ST-ResNet | 16.69 | 9.85 | 5.18 | 2.61 | 
| DeepSTN+ | 16.58 | 9.93 | 4.52 | 2.34 | 
| ST-3DNet | 16.04 | 9.38 | 4.94 | 2.43 | 
| STAR | 15.85 | 9.27 | 4.69 | 2.38 | 
| MS-ResCnet | 15.74 | 9.33 | 4.61 | 2.36 | 
| ST-MVAR | 13.78 | 8.72 | 4.38 | 2.20 | 
Table 5
Baseline model parameter Settings
| ST-ResNet | DeepSTN+ | ST-3DNet | STAR | ST-ResCnet | 
|---|---|---|---|---|
| ResUnit = 4 | ResPlus unit = 1 | 3D layer = 3 | ResUnit = 6 | ResUnit = 6 | 
| Channels = 64 | Channel = 64 | Kernel size = (3,3,3) | Channels = 64 | Channels = 64 | 
| Kernel size = (3,3) | Resplus channel = 8 | ResUnit = 4 | Kernel size = (3,3) | Feature ratio = 5:5 | 
| Pooling rate = 2 | ResUnit kernel size = (3,3) | Kernel size = (3,3) | ||
| Kernel size = (3,3) | 
| 1 | Zheng Yu, Capra L, Wolfson O, et al. Urban Computing: Concepts, Methodologies, and Applications[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 38. | 
| 2 | Song Xuan, Zhang Haoran, Akerkar Rajendra, et al. Big Data and Emergency Management: Concepts, Methodologies, and Applications[J]. IEEE Transactions on Big Data, 2022, 8(2): 397-419. | 
| 3 | Li Shuzhe, Chen Wei, Yan Bingqi, et al. Self-supervised Contrastive Representation Learning for Large-scale Trajectories[J]. Future Generation Computer Systems, 2023, 148: 357-366. | 
| 4 | Yao Huaxiu, Tang Xianfeng, Wei Hua, et al. Revisiting Spatial-temporal Similarity: A Deep Learning Framework for Traffic Prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5668-5675. | 
| 5 | Li Kuilin, Zhai Chunjie, Xu Jianmin. Short-term Traffic Flow Prediction Using a Methodology Based on ARIMA and RBF-ANN[C]//2017 Chinese Automation Congress (CAC). Piscataway: IEEE, 2017: 2804-2807. | 
| 6 | Fu Rui, Zhang Zuo, Li Li. Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway: IEEE, 2016: 324-328. | 
| 7 | Liu Hongjie, Xu Hongzhe, Yan Yu, et al. Bus Arrival Time Prediction Based on LSTM and Spatial-Temporal Feature Vector[J]. IEEE Access, 2020, 8: 11917-11929. | 
| 8 | Zhang Junbo, Zheng Yu, Qi Dekang, et al. DNN-based Prediction Model for Spatio-temporal Data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2016: 92. | 
| 9 | Zhang Junbo, Zheng Yu, Qi Dekang. Deep Spatio-temporal Residual Networks for Citywide Crowd Flows Prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 1655-1661. | 
| 10 | Lin Ziqian, Feng Jie, Lu Ziyang, et al. DeepSTN+: Context-aware Spatial-temporal Neural Network for Crowd Flow Prediction in Metropolis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 1020-1027. | 
| 11 | Wang Hongnian, Su Han. STAR: A Concise Deep Learning Framework for Citywide Human Mobility Prediction[C]//2019 20th IEEE International Conference on Mobile Data Management (MDM). Piscataway: IEEE, 2019: 304-309. | 
| 12 | Dai Genan, Kong Weiyang, Liu Yubao, et al. Multi-perspective Convolutional Neural Networks for Citywide Crowd Flow Prediction[J]. Applied Intelligence, 2023, 53(8): 8994-9008. | 
| 13 | Ding Fei, Zhu Yue, Yin Qi, et al. MS-ResCnet: A Combined Spatiotemporal Modeling and Multi-scale Fusion Network for Taxi Demand Prediction[J]. Computers and Electrical Engineering, 2023, 105: 108558. | 
| 14 | Yao Huaxiu, Wu Fei, Ke Jintao, et al. Deep Multi-view Spatial-temporal Network for Taxi Demand Prediction[C]//Proceedings of the Thirty-second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2588-2595. | 
| 15 | Guo Shengnan, Lin Youfang, Li Shijie, et al. Deep Spatial-Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926. | 
| 16 | Chen Cen, Li Kenli, Teo Sin G, et al. Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks[J]. ACM Transactions on Knowledge Discovery from Data, 2020, 14(4): 42. | 
| 17 | Zhou Qianqian, Chen Nan, Lin Siwei. FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features[J]. Sensors, 2022, 22(18): 6921. | 
| 18 | 陈静, 张昭冲, 王琳凯, 等. 基于卷积长短时记忆网络的短时公交客流量预测[J]. 系统仿真学报, 2024, 36(2): 476-486. | 
| Chen Jing, Zhang Zhaochong, Wang Linkai, et al. Short-term Bus Passenger Flow Prediction Based on Convolutional Long-short-term Memory Network[J]. Journal of System Simulation, 2024, 36(2): 476-486. | |
| 19 | Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. | 
| 20 | Woo Sanghyun, Park Jongchan, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. | 
| 21 | Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 13708-13717. | 
| 22 | Humaira H, Rasyidah R. Determining the Appropiate Cluster Number Using Elbow Method for K-means Algorithm[C]//Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018. Nitra Slovakia: EAI, 2018: 2292388. | 
| [1] | Huang Zhiqin, Lu Tianying, Chen Zheyi. Multi-UAV Deployment and Collaborative Offloading for Large-scale IoT Systems [J]. Journal of System Simulation, 2025, 37(1): 25-39. | 
| [2] | Chen Jing, Zhang Zhaochong, Wang Linkai, An Mai, Wang Wei. Short-term Bus Passenger Flow Prediction Based on Convolutional Long-short-term Memory Network [J]. Journal of System Simulation, 2024, 36(2): 476-486. | 
| [3] | Zhang Xiliu, Zhang Xiaoling, He Minjun. Research on Vehicle Detection Method Based on Improved YOLOX-s [J]. Journal of System Simulation, 2024, 36(2): 487-496. | 
| [4] | Shugang Liu, Linkun Zhang, Haodong Du, Hongtao Wang. Improved Object Detection of YOLOv4 in Foggy Conditions [J]. Journal of System Simulation, 2023, 35(8): 1681-1691. | 
| [5] | Xu Wang, Weidong Ji, Guohui Zhou, Jiahui Yang. Multi-objective Optimization Algorithm Based on Multi-index Elite Individual Game Mechanism [J]. Journal of System Simulation, 2023, 35(3): 494-514. | 
| [6] | Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan. Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section [J]. Journal of System Simulation, 2023, 35(1): 146-157. | 
| [7] | Li Yuan, Geng Zewei. Fault Diagnosis of Industrial Process Based on LLE and K-means Clustering Algorithm [J]. Journal of System Simulation, 2021, 33(9): 2066-2073. | 
| [8] | Ji Xiaofeng, Ge Yicheng. Holiday Highway Traffic Flow Prediction Method Based on Deep Learning [J]. Journal of System Simulation, 2020, 32(6): 1164-1171. | 
| [9] | Zhu Hongkun, Yin Jiawei, Feng Wenyu, Hua Liang, Fei Minrui, Zhang Kun. Research and Application of a Lightweight Real-time Human Posture Detection Model [J]. Journal of System Simulation, 2020, 32(11): 2155-2165. | 
| [10] | Liu Mingyu, Wu Jianping, Wang Yubo, He Lei. Traffic Flow Prediction Based on Deep Learning [J]. Journal of System Simulation, 2018, 30(11): 4100-4106. | 
| [11] | Su Benyue, Ma Jinyu, Peng Yusheng, Sheng Min. Algorithm for RGBD Point Cloud Denoising and Simplification Based on K-means Clustering [J]. Journal of System Simulation, 2016, 28(10): 2329-2335. | 
| [12] | Zhang Ziying, Zhou Mingquan, Shui Wuyang, Wu Zhongke, Zheng Xia. Color Transfer Based on K-means Clustering Algorithm and Region Matching [J]. Journal of System Simulation, 2015, 27(10): 2359-2364. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||