Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (2): 436-449.doi: 10.16182/j.issn1004731x.joss.23-1128
• Papers • Previous Articles
Chen Yongzhang, Mo Yuanbin
Received:
2023-09-12
Revised:
2023-10-19
Online:
2025-02-14
Published:
2025-02-10
Contact:
Mo Yuanbin
CLC Number:
Chen Yongzhang, Mo Yuanbin. Gaussian Chaotic Fire Hawk Optimization Algorithm for Solving Dynamic Optimization Problems[J]. Journal of System Simulation, 2025, 37(2): 436-449.
Table 3
Test function simulation results
函数 | 指标 | GCFHO | FHO | WOA | HHO | PFA | GWO |
---|---|---|---|---|---|---|---|
F1 | 最小值 | 1.416 2×10-240 | 1.221 8×10-143 | 3.263 7×10-172 | 1.614 1×10-28 | 3.054 4×10-61 | |
最大值 | 9.102 8×10-227 | 2.347 4×10-129 | 2.227 9×10-152 | 2.410 1×10-25 | 5.336 2×10-58 | ||
均值 | 9.409 2×10-228 | 1.915 7×10-130 | 1.128 9×10-153 | 2.899 3×10-26 | 6.214 6×10-59 | ||
标准差 | 0 | 6.020 7×10-130 | 4.978 5×10-153 | 5.574 4×10-26 | 1.315 4×10-58 | ||
F2 | 最小值 | 1.416 2×10-240 | 1.221 8×10-143 | 3.263 7×10-172 | 1.614 1×10-28 | 3.054 4×10-61 | |
最大值 | 9.102 8×10-227 | 2.347 4×10-129 | 2.227 9×10-152 | 2.410 1×10-25 | 5.336 2×10-58 | ||
均值 | 9.409 2×10-228 | 1.915 7×10-130 | 1.128 9×10-153 | 2.899 3×10-26 | 6.214 6×10-59 | ||
标准差 | 0 | 6.020 7×10-130 | 4.978 5×10-153 | 5.574 4×10-26 | 1.315 4×10-58 | ||
F3 | 最小值 | 0 | 0.011 5 | 0.010 3 | 4.084 28×10-6 | 2.240 73×10-5 | |
最大值 | 0 | 6.792 4 | 0.354 0 | 0.000 5 | 1.752 2 | ||
均值 | 0 | 4.715 3 | 0.064 8 | 6.340 37×10-5 | 0.718 2 | ||
标准差 | 0 | 2.120 6 | 0.079 4 | 0.000 1 | 0.441 8 | ||
F4 | 最小值 | 0 | 45.989 3 | ||||
最大值 | 0 | 5.684 34×10-14 | 143.143 2 | 1.136 87×10-13 | |||
均值 | 0 | 2.842 17×10-15 | 80.350 5 | 8.526 51×10-15 | |||
标准差 | 0 | 1.271 06×10-14 | 25.358 2 | 2.781 69×10-14 | |||
F5 | 最小值 | 4.440 89×10-16 | 6.794 56×10-14 | 1.465 49×10-14 | |||
最大值 | 4.440 89×10-16 | 7.549 52×10-15 | 3.521 0 | 2.176 04×10-14 | |||
均值 | 4.440 89×10-16 | 3.286 26×10-15 | 2.011 3 | 1.518 79×10-14 | |||
标准差 | 0 | 2.472 16×10-15 | 0.944 0 | 1.738 56×10-15 | |||
F6 | 最小值 | 0 | |||||
最大值 | 0 | 0.107 2 | 0.041 7 | 0.045 5 | |||
均值 | 0 | 0.005 4 | 0.010 7 | 0.005 9 | |||
标准差 | 0 | 0.024 0 | 0.011 6 | 0.013 3 | |||
F7 | 最小值 | 1.570 54×10-32 | 0.000 1 | 0.001 1 | 9.966 35×10-7 | 0.012 4 | |
最大值 | 1.570 54×10-32 | 0.301 0 | 1.265 2 | 8.112 3 | 0.071 6 | ||
均值 | 1.570 54×10-32 | 0.044 9 | 0.067 3 | 2.566 2 | 0.037 4 | ||
标准差 | 2.808 01×10-48 | 0.091 8 | 0.282 0 | 2.792 4 | 0.016 0 | ||
F8 | 最小值 | 1.349 78×10-32 | 0.015 2 | 0.024 7 | 4.727 4×10-6 | 0.170 3 | |
最大值 | 1.217 75×10-7 | 2.998 7 | 0.710 4 | 0.233 4 | 1.123 2 | ||
均值 | 6.088 75×10-9 | 1.694 8 | 0.233 1 | 0.035 8 | 0.554 6 | ||
标准差 | 2.722 97×10-8 | 1.384 1 | 0.189 4 | 0.071 6 | 0.243 9 | ||
F9 | 最小值 | -3.322 0 | -3.308 2 | -3.293 6 | -3.322 0 | ||
最大值 | -3.203 1 | -3.012 4 | -2.873 4 | -2.800 2 | -3.136 9 | ||
均值 | -3.298 2 | -3.240 4 | -3.235 6 | -3.141 1 | -3.225 5 | ||
标准差 | 0.048 8 | 0.091 3 | 0.126 0 | 0.124 0 | 0.069 0 |
Table 4
Experimental results of different methods in case I
方法 | 维度 | 最优 | 最差 | 均值 | 标准差 | 时间/s |
---|---|---|---|---|---|---|
ADIWO[ | 60 | 0.610 792 | 0.610 792 | 0.610 792 | — | 188 |
IDP[ | 80 | 0.610 775 | — | — | — | — |
ISOA[ | 30 | 0.610 592 23 | — | — | — | 272 |
APSO[ | 100 | 0.610 785 0 | 0.610 785 0 | 0.610 785 0 | — | — |
EBSO[ | 80 | 0.610 781 14 | — | — | — | — |
IKBCA[ | 100 | 0.610 787 | 0.610 779 | — | — | — |
FHO | 50 | 0.606 440 5 | 0.605 946 5 | 0.606 056 3 | 0.000 166 017 | 93 |
GCFHO | 50 | 0.610 708 | 0.610 708 | 0.610 708 | 4.431 25×10-8 | 34 |
100 | 0.610 792 | 0.610 792 | 0.610 792 | 4.330 03×10-9 | 225 | |
150 | 0.610 796 | 0.610 796 | 0.610 796 | 3.230 19×10-8 | 551 |
Table 5
Experimental results of different methods in case Ⅱ
方法 | 维度 | 最优 | 最差 | 均值 | 标准差 | 时间/s |
---|---|---|---|---|---|---|
HGPSO[ | 10 | 0.477 71* | 0.477 71 | 0.477 71 | — | 9 641 |
IDP[ | 40 | 0.476 95 | — | — | — | — |
ISOA[ | 40 | 4.777 0 | — | — | — | 285 |
EBSO[ | 40 | 0.476 972 8 | ||||
IKBCA[ | 100 | 0.477 70 | 0.477 68 | — | — | — |
TDE[ | 40 | 0.476 946 | — | — | — | — |
FHO | 90 | 0.473 434 | 0.471 652 | 0.472 330 | 0.000 527 142 | 165 |
50 | 0.477 262 | 0.477 262 | 0.477 262 | 5.730 68×10-8 | 35 | |
GCFHO | 90 | 0.477 711 | 0.477 711 | 0.477 711 | 2.441 65×10-8 | 237 |
120 | 0.477 688 | 0.477 687 | 0.477 687 | 6.080 86×10-7 | 294 |
Table 6
Experimental results of different methods in case Ⅲ
方法 | 维度 | 最优 | 最差 | 均值 | 标准差 | 时间/s |
---|---|---|---|---|---|---|
HGPSO[ | 15 | 0.133 47 | 0.133 98 | 0.133 66 | — | 21 158 |
DE[ | 13 | 0.135 580 | 0.244 612 | 0.146 501 | 0.033 552 999 | 674 |
LCA[ | 20 | 0.133 18 | 0.201 02 | 0.147 142 5 | 0.024 088 327 | — |
QITLBO[ | 20 | 0.133 11* | 0.133 14 | 0.133 20 | 2.39×10-5 | 461 |
文献[ | 78 | 0.133 21 | — | — | — | — |
FHO | 100 | 0.149 918 | 0.159 827 | 0.153 750 | 0.003 040 983 | 198 |
GCFHO | 50 | 0.133 27 | 0.133 27 | 0.133 27 | 2.543 26×10-11 | 53 |
100 | 0.133 14 | 0.133 14 | 0.133 14 | 1.280 38×10-8 | 235 | |
156 | 0.133 11 | 0.133 12 | 0.133 11 | 1.883 85×10-6 | 492 |
1 | Sundaralingam Ramasubramanian. Two-step Method for Dynamic Optimization of Inequality State Constrained Systems Using Iterative Dynamic Programming[J]. Industrial & Engineering Chemistry Research, 2015, 54(31): 7658-7667. |
2 | Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer, 1999. |
3 | Eva Balsa Canto, Banga Julio R, Alonso Antonio A, et al. Restricted Second Order Information for the Solution of Optimal Control Problems Using Control Vector Parameterization[J]. Journal of Process Control, 2002, 12(2): 243-255. |
4 | Luus R. Iterative Dynamic Programming[M]. New York: CRC Press, 2019. |
5 | Zhou You, Liu Xinggao. Control Parameterization-Based Adaptive Particle Swarm Approach for Solving Chemical Dynamic Optimization Problems[J]. Chemical Engineering & Technology, 2014, 37(4): 692-702. |
6 | Liu Rui, Mo Yuanbin, Lu Yanyue, et al. Swarm-intelligence Optimization Method for Dynamic Optimization Problem[J]. Mathematics, 2022, 10(11): 1803. |
7 | Tian Jing, Zhang Panpan, Wang Yalin, et al. Control Vector Parameterization-based Adaptive Invasive Weed Optimization for Dynamic Processes[J]. Chemical Engineering & Technology, 2018, 41(5): 964-974. |
8 | Chen Xu, Du Wenli, Tianfield H, et al. Dynamic Optimization of Industrial Processes with Nonuniform Discretization-based Control Vector Parameterization[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 1289-1299. |
9 | Lopez Cruz I L, Van Willigenburg L G, Van Straten G. Efficient Differential Evolution Algorithms for Multimodal Optimal Control Problems[J]. Applied Soft Computing, 2003, 3(2): 97-122. |
10 | Dadebo S A, Mcauley K B. Dynamic Optimization of Constrained Chemical Engineering Problems Using Dynamic Programming[J]. Computers & Chemical Engineering, 1995, 19(5): 513-525. |
11 | Xu Le, Mo Yuanbin, Lu Yanyue, et al. Improved Seagull Optimization Algorithm Combined with an Unequal Division Method to Solve Dynamic Optimization Problems[J]. Processes, 2021, 9(6): 1037. |
12 | Sun D Y, Lin Pimin, Lin Shuping. Integrating Controlled Random Search into the Line-up Competition Algorithm to Solve Unsteady Operation Problems[J]. Industrial & Engineering Chemistry Research, 2008, 47(22): 8869-8887. |
13 | Chen Xu, Mei Congli, Xu Bin, et al. Quadratic Interpolation Based Teaching-learning-based Optimization for Chemical Dynamic System Optimization[J]. Knowledge-Based Systems, 2018, 145: 250-263. |
14 | Azizi Mahdi, Talatahari Siamak, Gandomi A H. Fire Hawk Optimizer: A Novel Metaheuristic Algorithm[J]. Artificial Intelligence Review, 2023, 56(1): 287-363. |
15 | 刘景森, 袁蒙蒙, 李煜. 基于改进樽海鞘群算法求解工程优化设计问题[J]. 系统仿真学报, 2021, 33(4): 854-866. |
Liu Jingsen, Yuan Mengmeng, Li Yu. Solving Engineering Optimization Design Problems Based on Improved Salp Swarm Algorithm[J]. Journal of System Simulation, 2021, 33(4): 854-866. | |
16 | 彭鑫, 祁荣宾, 杜文莉, 等. 一种改进的知识进化算法及其在化工动态优化中的应用[J]. 化工学报, 2012, 63(3): 841-850. |
Peng Xin, Qi Rongbin, Du Wenli, et al. An Improved Knowledge Evolution Algorithm and Its Application to Chemical Process Dynamic Optimization[J]. CIESC Journal, 2012, 63(3): 841-850. | |
17 | Yucheng Lü, Mo Yuanbin, Lu Yanyue, et al. Enhanced Beetle Antennae Algorithm for Chemical Dynamic Optimization Problems' Non-fixed Points Discrete Solution[J]. Processes, 2022, 10(1): 148. |
18 | 刘宗其, 杜文莉, 祁荣宾, 等. 基于知识改进的文化算法及其在化工动态优化中的应用[J]. 化工学报, 2010, 61(11): 2889-2895. |
Liu Zongqi, Du Wenli, Qi Rongbin, et al. Dynamic Optimization in Chemical Processes Using Improved Knowledge-based Cultural Algorithm[J]. CIESC Journal, 2010, 61(11): 2889-2895. | |
19 | Angira Rakesh, Santosh Alladwar. Optimization of Dynamic Systems: A Trigonometric Differential Evolution Approach[J]. Computers & Chemical Engineering, 2007, 31(9): 1055-1063. |
20 | 李国栋. 基于控制向量参数化的动态优化研究[D]. 杭州: 浙江大学, 2015. |
Li Guodong. Control Vector Parameterization Based Dynamic Optimization Research[D]. Hangzhou: Zhejiang University, 2015. | |
21 | Luus R. Optimal Control by Dynamic Programming Using Systematic Reduction in Grid Size[J]. International Journal of Control, 1990, 51(5): 995-1013. |
[1] | Tong Liang, Yang Jie, Gan Xusheng, Shen Di, Yang Wenda, Chen Daxiong. Simulation Research on Multi-aircraft Conflict Resolution Based on Improved Chaotic Ant Colony Algorithm [J]. Journal of System Simulation, 2025, 37(1): 155-166. |
[2] | Zhu Yuting, Su Huankun, Feng Xiaodong, Lei Shijie, Fu Yanfang. Time Slot Allocation Method of Data Link Based on Improved Difference Algorithm [J]. Journal of System Simulation, 2024, 36(5): 1242-1250. |
[3] | Li Gaoyang, Li Xiangfeng, Zhao Kang, Jin Yuchao, Yi Zhidong, Zuo Dunwen. Three-Dimensional Path Planning of UAV Based on All Particles Driving Wild Horse Optimizer Algorithm [J]. Journal of System Simulation, 2024, 36(3): 595-607. |
[4] | Guo Yecai, Ma Weiwei, Zhu Sainan. Source Location Algorithm Based on Chaos Artificial Bee Colony Algorithm [J]. Journal of System Simulation, 2017, 29(6): 1168-1173. |
[5] | Wu Zhaoxing, Jin Xin, Song Chenggen, Zhang Chunwei, Li Xiaodong. Random Reversible Matrix based Point Cloud Encryption [J]. Journal of System Simulation, 2016, 28(10): 2455-2459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||