Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (11): 2566-2577.doi: 10.16182/j.issn1004731x.joss.23-0887
Li Weigang1,2, Yu Chuxiang2, Wang Yongqiang2, Zou Shaofeng2
Received:
2023-07-13
Revised:
2023-10-10
Online:
2024-11-13
Published:
2024-11-19
CLC Number:
Li Weigang, Yu Chuxiang, Wang Yongqiang, Zou Shaofeng. Real-time Lidar SLAM Algorithm Based on Distribution Optimal Registration[J]. Journal of System Simulation, 2024, 36(11): 2566-2577.
Table 1
Comparison experiment of DO-GICP algorithm
数据集 | RMSE/m | FPS/(帧/s) | ||||
---|---|---|---|---|---|---|
Fast-GICP | Faster-GICP | DO-GICP(Proposed) | Fast-GICP | Faster-GICP | DO-GICP(Proposed) | |
Avg | 6.26 | 6.34 | 6.08 | 66.62 | 38.31 | 72.31 |
KITTI-00 | 6.96 | 10.14 | 6.97 | 81.23 | 45.18 | 89.49 |
KITTI-01 | 23.67 | 24.21 | 23.74 | 39.38 | 31.73 | 46.26 |
KITTI-02 | 17.69 | 15.24 | 16.62 | 78.67 | 43.52 | 82.13 |
KITTI-03 | 2.74 | 1.91 | 2.66 | 54.58 | 34.54 | 60.52 |
KITTI-04 | 0.93 | 0.53 | 0.83 | 49.26 | 30.52 | 59.71 |
KITTI-05 | 3.90 | 4.04 | 3.46 | 76.86 | 41.79 | 83.78 |
KITTI-06 | 1.42 | 1.27 | 1.41 | 51.23 | 31.72 | 57.79 |
KITTI-07 | 0.76 | 1.04 | 0.74 | 82.3 | 46.58 | 89.39 |
KITTI-08 | 6.46 | 6.39 | 6.25 | 63.98 | 36.84 | 67.73 |
KITTI-09 | 2.26 | 2.76 | 2.20 | 64.10 | 34.93 | 66.37 |
KITTI-10 | 2.05 | 2.28 | 1.97 | 91.24 | 43.93 | 92.30 |
Table 2
Ablation experiment of DO-GICP algorithm
数据集 | Fast-GICP[ | A (Proposed) | B (Proposed) | DO-GICP (Proposed) |
---|---|---|---|---|
Avg | 6.26 | 6.22 | 6.23 | 6.08 |
KITTI-00 | 6.96 | 6.91 | 6.97 | 6.97 |
KITTI-01 | 23.67 | 23.58 | 23.66 | 23.74 |
KITTI-02 | 17.69 | 17.61 | 17.72 | 16.62 |
KITTI-03 | 2.74 | 2.69 | 2.75 | 2.66 |
KITTI-04 | 0.93 | 0.89 | 0.93 | 0.83 |
KITTI-05 | 3.90 | 3.91 | 3.55 | 3.46 |
KITTI-06 | 1.42 | 1.42 | 1.41 | 1.41 |
KITTI-07 | 0.76 | 0.76 | 0.74 | 0.74 |
KITTI-08 | 6.46 | 6.42 | 6.51 | 6.25 |
KITTI-09 | 2.26 | 2.25 | 2.29 | 2.20 |
KITTI-10 | 2.05 | 2.00 | 2.02 | 1.97 |
Table 3
Accuracy comparison experiment of different SLAM algorithms on KITTI dataset
数据集 | LOAM[ | LEGO-LOAM[ | LEGO- LOAM(SC) | LITAMIN2[ | Proposed |
---|---|---|---|---|---|
KITTI-00 | 19.4 | 1.9 | 1.8 | 5.8 | 1.7 |
KITTI-01 | 21 | 285.7 | 285.4 | 15.9 | 1.7 |
KITTI-02 | 111.6 | 30.0 | 28.4 | 10.7 | 5.2 |
KITTI-03 | 1.0 | 1.1 | 1.1 | 0.8 | 1.1 |
KITTI-04 | 0.5 | 0.5 | 0.5 | 0.7 | 0.5 |
KITTI-05 | 4.6 | 1.1 | 1.1 | 2.4 | 1.1 |
KITTI-06 | 1.1 | 0.9 | 0.9 | 0.9 | 0.9 |
KITTI-07 | 1.3 | 0.5 | 0.5 | 0.6 | 0.4 |
KITTI-08 | 6.7 | 4.7 | 5.0 | 2.5 | 3.3 |
KITTI-09 | 5.3 | 7.4 | 6.7 | 2.1 | 1.8 |
KITTI-10 | 1.9 | 2.5 | 2.6 | 1.0 | 1.8 |
Avg | 15.8 | 30.5 | 30.3 | 3.9 | 3.3 |
LOOP | × | √ | √ | × | √ |
Table 4
Accuracy comparison experiment of different SLAM algorithms on MULRAN dataset
数据集 | LIO- SAM[ | LIO- SAM(SC) | LEGO- LOAM(SC) | LS- BA[ | Proposed | |
---|---|---|---|---|---|---|
Kaist-01 | Std | 1.58 | 1.51 | 2.68 | — | 0.74 |
RMSE | 3.73 | 3.55 | 5.27 | 3.36 | 2.17 | |
Kaist-02 | Std | 4.52 | 1.95 | 3.10 | — | 0.93 |
RMSE | 7.2 | 3.76 | 5.38 | 3.75 | 2.65 | |
Dcc-01 | Std | 15.54 | 1.93 | 2.25 | — | 1.70 |
RMSE | 34.82 | 5.75 | 6.69 | 5.20 | 5.09 | |
Dcc-02 | Std | 12.09 | 1.32 | 1.62 | — | 1.10 |
RMSE | 27.22 | 3.55 | 4.44 | 3.22 | 3.05 | |
RS-01 | Std | 48.91 | 4.44 | 12.11 | — | 4.08 |
RMSE | 87.30 | 9.62 | 24.57 | 8.92 | 6.69 | |
RS-02 | Std | 56.13 | 6.51 | 15.52 | — | 2.71 |
RMSE | 114.18 | 13.59 | 32.37 | 7.94 | 5.66 | |
LOOP | √ | √ | √ | √ |
1 | Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99-110. |
2 | Geiger Andreas, Lenz Philip, Urtasun R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3354-3361. |
3 | 焦嵩鸣, 姚鑫, 丁辉, 等. 适应于环境空间变化的激光雷达SLAM建图方法[J]. 系统仿真学报, 2023, 35(8): 1788-1798. |
Jiao Songming, Yao Xin, Ding Hui, et al. Lidar SLAM Mapping Method Adapted to Environmental Spatial Changes[J]. Journal of System Simulation, 2023, 35(8): 1788-1798. | |
4 | Brock E, Huang Chengxuan, Wu Dalei, et al. Lidar-based Real-time Mapping for Digital Twin Development[C]//2021 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2021: 1-6. |
5 | Singandhupe A, La H M. A Review of SLAM Techniques and Security in Autonomous Driving[C]//2019 Third IEEE International Conference on Robotic Computing (IRC). Piscataway: IEEE, 2019: 602-607. |
6 | 李维刚, 钟正, 王永强, 等. 基于时间距离-熵减策略的同步定位与地图构建算法[J]. 信息与控制, 2023, 52(5): 660-668, 688. |
Li Weigang, Zhong Zheng, Wang Yongqiang, et al. Synchronous Localization and Mapping Algorithm Based on Time Distance-entropy Reduction Strategy[J]. Information and Control, 2023, 52(5): 660-668, 688. | |
7 | 黄鹤, 佟国峰, 夏亮, 等. SLAM技术及其在测绘领域中的应用[J]. 测绘通报, 2018(3): 18-24. |
Huang He, Tong Guofeng, Xia Liang, et al. SLAM Technology and Its Application in Surveying and Mapping[J]. Bulletin of Surveying and Mapping, 2018(3): 18-24. | |
8 | Cadena Cesar, Carlone L, Carrillo Henry, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-perception Age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332. |
9 | Zhang Ji, Singh S. Low-drift and Real-time Lidar Odometry and Mapping[J]. Autonomous Robots, 2017, 41(2): 401-416. |
10 | Shan Tixiao, Englot B. LeGO-LOAM: Lightweight and Ground-optimized Lidar Odometry and Mapping on Variable Terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 4758-4765. |
11 | Wang Han, Wang Chen, Chen Chunlin, et al. F-LOAM: Fast LiDAR Odometry and Mapping[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2021: 4390-4396. |
12 | Cedric Le Gentil, Vidal-Calleja Teresa, Huang Shoudong. IN2LAAMA: Inertial Lidar Localization Autocalibration and Mapping[J]. IEEE Transactions on Robotics, 2021, 37(1): 275-290. |
13 | Shan Tixiao, Englot B, Meyers D, et al. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 5135-5142. |
14 | Pan Yue, Xiao Pengchuan, He Yujie, et al. MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11633-11640. |
15 | Zhou Pengwei, Guo Xuexun, Pei Xiaofei, et al. T-LOAM: Truncated Least Squares LiDAR-only Odometry and Mapping in Real Time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. |
16 | Dellenbach Pierre, Jean Emmanuel Deschaud, Jacquet Bastien, et al. CT-ICP: Real-time Elastic LiDAR Odometry with Loop Closure[C]//2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2022: 5580-5586. |
17 | Chang Yun, Ebadi K, Denniston C E, et al. LAMP 2.0: A Robust Multi-robot SLAM System for Operation in Challenging Large-scale Underground Environments[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9175-9182. |
18 | Segal A V, Haehnel D, Thrun S. Generalized-ICP[C]//Proceedings of Robotics: Science and Systems. [S.l.:s.n.], 2009: 21. |
19 | Koide Kenji, Yokozuka Masashi, Oishi Shuji, et al. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11054-11059. |
20 | Vlaminck Michiel, Luong Hiep, Philips Wilfried. Surface-based GICP[C]//2018 15th Conference on Computer and Robot Vision (CRV). Piscataway: IEEE, 2018: 262-268. |
21 | Servos James, Waslander Steven L. Multi-channel Generalized-ICP: A Robust Framework for Multi-channel Scan Registration[J]. Robotics and Autonomous Systems, 2017, 87: 247-257. |
22 | Ren Zhuli, Wang Liguan, Bi Lin. Robust GICP-Based 3D LiDAR SLAM for Underground Mining Environment[J]. Sensors, 2019, 19(13): 2915. |
23 | Chen K, Lopez B T, Agha-mohammadi A A, et al. Direct LiDAR Odometry: Fast Localization with Dense Point Clouds[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2000-2007. |
24 | Yokozuka Masashi, Koide Kenji, Oishi Shuji, et al. LiTAMIN: LiDAR-based Tracking and Mapping by Stabilized ICP for Geometry Approximation with Normal Distributions[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 5143-5150. |
25 | Yokozuka Masashi, Koide Kenji, Oishi Shuji, et al. LiTAMIN2: Ultra Light LiDAR-based SLAM Using Geometric Approximation Applied with KL-divergence[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11619-11625. |
26 | Wang Jikai, Xu Meng, Foroughi Farzin, et al. FasterGICP: Acceptance-rejection Sampling Based 3D Lidar Odometry[J]. IEEE Robotics and Automation Letters, 2022, 7(1): 255-262. |
27 | Blanco J L, Rai P K. Nanoflann: A C++ Header-only Fork of FLANN, a Library for Nearest Neighbor (NN) with KD-trees[EB/OL]. [2023-01-18]. . |
28 | Xu Wei, Cai Yixi, He Dongjiao, et al. FAST-LIO2: Fast Direct LiDAR-inertial Odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073. |
29 | Kim Giseop, Kim Ayoung. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 4802-4809. |
30 | Dellaert F, Kaess M. Factor Graphs for Robot Perception[M]. Hanover: Now Publishers Inc., 2017: 1-139. |
31 | Kim Giseop, Yeong Sang Park, Cho Younghun, et al. MulRan: Multimodal Range Dataset for Urban Place Recognition[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 6246-6253. |
32 | Liu Xiyuan, Liu Zheng, Kong Fanze, et al. Large-scale LiDAR Consistent Mapping Using Hierarchical LiDAR Bundle Adjustment[J]. IEEE Robotics and Automation Letters, 2023, 8(3): 1523-1530. |
[1] | Wang Haichao, Yin Yong, Jing Qianfeng, Cong Lin. Estimation of the Berthing Parameter of Unmanned Surface Vessels Based on 3D LiDAR [J]. Journal of System Simulation, 2024, 36(8): 1737-1748. |
[2] | Yuan Zhang, Haoyu Han, Xie Han, Jiaxu Fu. Point Cloud Registration Method Based on Improved Covariance Matrix Descriptor [J]. Journal of System Simulation, 2023, 35(5): 979-986. |
[3] | Xuesong Mao, Runlong Lei, Shaowei Huang, Xuetao Mao. Simulation on Mutual Interference of Laser Radar in Road Environments [J]. Journal of System Simulation, 2022, 34(4): 891-900. |
[4] | Sun Shuifa, Li Zhun, Xia Kun, Shi Yunfei, Yang Jiquan, Dong Fangmin. Variable Scale Point Cloud Registration Algorithm [J]. Journal of System Simulation, 2018, 30(7): 2465-2474. |
[5] | Zhang Yanguo, Li Qing. Multi-frame Fusion Method for Point Cloud of LiDAR Based on IMU [J]. Journal of System Simulation, 2018, 30(11): 4334-4339. |
[6] | Zhang Hang, Chen Bin, Xue Hanzhang, Zhu Zhengqiu, Wang Rongxiao. Research on 3D Scene Modeling Based on UAV and LIDAR [J]. Journal of System Simulation, 2017, 29(9): 1914-1920. |
[7] | Song Liang, Li Zhi, Ma Xingrui. LIDAR-Based Relative Position and Attitude Filtering for Unknown Targets [J]. Journal of System Simulation, 2017, 29(5): 1103-1111. |
[8] | Xia Wenze, Han Shaokun, Cao Jingya. Simulation Technology Research on Streak Tube Imaging Lidar [J]. Journal of System Simulation, 2016, 28(12): 3027-3033. |
[9] | Fu Chengqun, Lü Xiuyuan, Wang Yong, Wang Huaixiao. Simulation Research on Airborne Lidar Bathymetry System [J]. Journal of System Simulation, 2015, 27(5): 1038-1043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||