Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (10): 2359-2370.doi: 10.16182/j.issn1004731x.joss.23-0775
• Papers • Previous Articles
Li Jinwen1, Wang Peng1,2, Pan Youmei1, Hui Xinyao1
Received:
2023-06-27
Revised:
2023-08-15
Online:
2024-10-15
Published:
2024-10-18
Contact:
Wang Peng
CLC Number:
Li Jinwen, Wang Peng, Pan Youmei, Hui Xinyao. Adaptive Recognition Method of Capability Boundary Parameters for Unmanned Autonomous Systems[J]. Journal of System Simulation, 2024, 36(10): 2359-2370.
Table 2
Model evaluation index
参数 | Aggregation | Flame | Two moon |
---|---|---|---|
MSE | 初始模型: 8.33×10-4 | 初始模型:4.69×10-3 | 初始模型:3.26×10-3 |
最终模型: 6.24×10-4 | 最终模型:3.94×10-3 | 最终模型:4.93×10-4 | |
MAE | 初始模型: 3.47×10-1 | 初始模型:6.55×10-1 | 初始模型:4.93×10-1 |
最终模型: 3.34×10-1 | 最终模型:6.53×10-1 | 最终模型:3.05×10-1 | |
MedianAE | 初始模型: 2.17×10-1 | 初始模型:4.94×10-1 | 初始模型:3.97×10-1 |
最终模型: 2.15×10-1 | 最终模型:3.65×10-1 | 最终模型:1.28×10-1 |
1 | Patil K. Drone Warfare[J]. Journal of Defence Studies, 2022, 16(4): 243-251. |
2 | Li Chunnu. Artificial Intelligence Technology in UAV Equipment[C]//2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall). Piscataway: IEEE, 2021: 299-302. |
3 | Liang Mingzhou, Su Xin, Liu Xiaofeng, et al. Intelligent Ocean Convergence Platform Based on IoT Empowered with Edge Computing[J]. Journal of Internet Technology, 2020, 21(1): 235-244. |
4 | Loic Le Gratiet, Cannamela Claire. Cokriging-based Sequential Design Strategies Using Fast Cross-validation Techniques for Multi-fidelity Computer Codes[J]. Technometrics, 2015, 57(3): 418-427. |
5 | Kucherenko S, Giamalakis D, Shah N, et al. Computationally Efficient Identification of Probabilistic Design Spaces Through Application of Metamodeling and Adaptive Sampling[J]. Computers & Chemical Engineering, 2020, 132: 106608. |
6 | Serani A, Pellegrini R, Wackers J, et al. Adaptive Multi-fidelity Sampling for CFD-based Optimisation via Radial Basis Function Metamodels[J]. International Journal of Computational Fluid Dynamics, 2019, 33(6/7): 237-255. |
7 | Liu Haitao, Xu Shengli, Wang Xiaofang, et al. Optimal Weighted Pointwise Ensemble of Radial Basis Functions with Different Basis Functions[J]. AIAA Journal, 2016, 54(10): 3117-3133. |
8 | Diez Matteo, Volpi S, Serani Andrea, et al. Simulation-Based Design Optimization by Sequential Multi-criterion Adaptive Sampling and Dynamic Radial Basis Functions[M]//Minisci E, Vasile M, Jacques Periaux, et al. Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Cham: Springer International Publishing, 2019: 213-228. |
9 | Jiang Ping, Shu Leshi, Zhou Qi, et al. A Novel Sequential Exploration-exploitation Sampling Strategy for Global Metamodeling[J]. IFAC-PapersOnLine, 2015, 48(28): 532-537. |
10 | 郭述臻, 昂海松, 蔡红明. 一种自适应抽样的代理模型构建及其在复材结构优化中的应用[J]. 复合材料学报, 2018, 35(8): 2084-2094. |
Guo Shuzhen, Haisong Ang, Cai Hongming. Construction of an Adaptive Sampling Surrogate Model and Application in Composite Material Structure Optimization[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2084-2094. | |
11 | Steiner M, Bourinet J M, Lahmer T. An Adaptive Sampling Method for Global Sensitivity Analysis Based on Least-squares Support Vector Regression[J]. Reliability Engineering & System Safety, 2019, 183: 323-340. |
12 | Pan Guang, Ye Pengcheng, Wang Peng, et al. A Sequential Optimization Sampling Method for Metamodels with Radial Basis Functions[J]. The Scientific World Journal, 2014, 2014: 192862. |
13 | Böttcher Maria, Fuchs Alexander, Leichsenring Ferenc, et al. ELSA: An Efficient, Adaptive Ensemble Learning-based Sampling Approach[J]. Advances in Engineering Software, 2021, 154: 102974. |
14 | Eason J, Cremaschi S. Adaptive Sequential Sampling for Surrogate Model Generation with Artificial Neural Networks[J]. Computers & Chemical Engineering, 2014, 68: 220-232. |
15 | Wen Zhixun, Pei Haiqing, Liu Hai, et al. A Sequential Kriging Reliability Analysis Method with Characteristics of Adaptive Sampling Regions and Parallelizability[J]. Reliability Engineering & System Safety, 2016, 153: 170-179. |
16 | 谢雨珩, 李智, 杨明磊, 等. 基于自适应采样算法的芳烃异构化代理模型[J]. 化工学报, 2020, 71(2): 688-697. |
Xie Yuhang, Li Zhi, Yang Minglei, et al. Surrogate Model of Aromatic Isomerization Process Based on Adaptive Sampling Algorithm[J]. CIESC Journal, 2020, 71(2): 688-697. | |
17 | Shahsavani D, Grimvall A. An Adaptive Design and Interpolation Technique for Extracting Highly Nonlinear Response Surfaces from Deterministic Models[J]. Reliability Engineering & System Safety, 2009, 94(7): 1173-1182. |
18 | Liu Haitao, Xu Shengli, Ma Ying, et al. An Adaptive Bayesian Sequential Sampling Approach for Global Metamodeling[J]. Journal of Mechanical Design, 2016, 138(1): 011404. |
19 | J.van der Herten, Couckuyt I, Deschrijver D, et al. A Fuzzy Hybrid Sequential Design Strategy for Global Surrogate Modeling of High-dimensional Computer Experiments[J]. SIAM Journal on Scientific Computing, 2015, 37(2): A1020-A1039. |
20 | Jala Marjorie, Levy-Leduc Céline, Moulines Éric, et al. Sequential Design of Computer Experiments for the Assessment of Fetus Exposure to Electromagnetic Fields[J]. Technometrics, 2016, 58(1): 30-42. |
21 | Ajdari Ali, Mahlooji Hashem. An Adaptive Exploration-Exploitation Algorithm for Constructing Metamodels in Random Simulation Using a Novel Sequential Experimental Design[J]. Communications in Statistics- Simulation and Computation, 2014, 43(5): 947-968. |
22 | Li Jiaxin, Peng Ke, Wang Wenjie, et al. Optimization Design of Rockoons Based on Improved Sequential Approximation Optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(1): 140-153. |
23 | Han Zhonghua, Görtz Stefan. Hierarchical Kriging Model for Variable-fidelity Surrogate Modeling[J]. AIAA Journal, 2012, 50(9): 1885-1896. |
24 | Han Zhonghua, Zhang Keshi. Surrogate-based Optimization[M]//Olympia Roeva. Real-world Applications of Genetic Algorithms. Rijeka: IntechOpen, 2012: Ch. 17. |
25 | Hewing Lukas, Kabzan Juraj, Zeilinger Melanie N. Cautious Model Predictive Control Using Gaussian Process Regression[J]. IEEE Transactions on Control Systems Technology, 2020, 28(6): 2736-2743. |
26 | 华罗庚, 王元. 数论在近代分析中的应用[M]. 北京: 科学出版社, 1978. |
27 | Wang Dan, Lin Jiayu, Wang Yuangen. Query-efficient Adversarial Attack Based on Latin Hypercube Sampling[C]//2022 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE, 2022: 546-550. |
28 | Tao Ye, Ferranti Francesco, Nakhla M S. Uncertainty Quantification Using Parameter Space Partitioning[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(4): 2110-2119. |
29 | Li Ji, Yuesong Nan, Ji Hui. Un-supervised Learning for Blind Image Deconvolution via Monte-carlo Sampling[J]. Inverse Problems, 2022, 38(3): 035012. |
30 | Tan Wei, Hu Yongjiang, Zhao Yuefei, et al. Mission Planning for Unmanned Aerial Vehicles Based on Voronoi Diagram-tabu Genetic Algorithm[J]. Wireless Communications and Mobile Computing, 2021, 2021: 4154787. |
31 | Tao Ye, Ferranti Francesco, Nakhla M. High-dimensional Variability Analysis via Parameters Space Partitioning[C]//2020 IEEE/MTT-S International Microwave Symposium (IMS). Piscataway: IEEE, 2020: 61-63. |
32 | Majumder Raja, Gouri Sankar Bhunia, Patra Poly, et al. Assessment of Flood Hotspot at a Village Level Using GIS-based Spatial Statistical Techniques[J]. Arabian Journal of Geosciences, 2019, 12(13): 409. |
33 | Barmuta Pawd, Lukasik Konstanty, Ferranti Francesco, et al. Load-pull Measurements Using Centroidal Voronoi Tessellation[C]//2017 89th ARFTG Microwave Measurement Conference (ARFTG). Piscataway: IEEE, 2017: 1-4. |
34 | Badger L. Generating the Measures of n-balls[J]. The American Mathematical Monthly, 2000, 107(3): 256-258. |
35 | Gionis Aristides, Mannila Heikki, Tsaparas P. Clustering Aggregation[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 4-es. |
36 | Rodriguez Alex, Laio Alessandro. Clustering by Fast Search and Find of Density Peaks[J]. Science, 2014, 344(6191): 1492-1496. |
37 | Chen Yewang, Tang Shengyu, Bouguila N, et al. A Fast Clustering Algorithm Based on Pruning Unnecessary Distance Computations in DBSCAN for High-dimensional Data[J]. Pattern Recognition, 2018, 83: 375-387. |
38 | Fu Limin, Medico Enzo. FLAME, a Novel Fuzzy Clustering Method for the Analysis of DNA Microarray Data[J]. BMC Bioinformatics, 2007, 8(1): 3. |
39 | Du Mingjing, Ding Shifei, Jia Hongjie. Study on Density Peaks Clustering Based on K-nearest Neighbors and Principal Component Analysis[J]. Knowledge-Based Systems, 2016, 99: 135-145. |
40 | Xu Chen, Su Zhengchang. Identification of Cell Types from Single-cell Transcriptomes Using a Novel Clustering Method[J]. Bioinformatics, 2015, 31(12): 1974-1980. |
41 | Hou Jian, Zhang Aihua, Qi Naiming. Density Peak Clustering Based on Relative Density Relationship[J]. Pattern Recognition, 2020, 108: 107554. |
42 | Liu Rui, Wang Hong, Yu Xiaomei. Shared-nearest-neighbor-based Clustering by Fast Search and Find of Density Peaks[J]. Information Sciences, 2018, 450: 200-226. |
43 | Ortiz-Jiménez Guillermo, Mireille El Gheche, Simou Effrosyni, et al. Forward-backward Splitting for Optimal Transport Based Problems[C]//ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2020: 5405-5409. |
44 | Peter Timm J, Nelles Oliver. Fast and Simple Dataset Selection for Machine Learning[J]. Automatisierungstechnik, 2019, 67(10): 833-842. |
45 | Zhan Kun, Zhang Changqing, Guan Junpeng, et al. Graph Learning for Multiview Clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2887-2895. |
46 | Mohd Shoaib Khan, Alamri Badriah AS, Mursaleen M, et al. Sequence Spaces M(ϕ) and N(ϕ) with Application in Clustering[J]. Journal of Inequalities and Applications, 2017, 2017(1): 63. |
47 | Dimple, Pradeep Kumar Singh, Rajput Jitendra, et al. Combination of Discretization Regression with Data-driven Algorithms for Modeling Irrigation Water Quality Indices[J]. Ecological Informatics, 2023, 75: 102093. |
48 | Spiliotis Evangelos, Nikolopoulos K, Assimakopoulos Vassilios. Tales from Tails: On the Empirical Distributions of Forecasting Errors and Their Implication to Risk[J]. International Journal of Forecasting, 2019, 35(2): 687-698. |
[1] | Li Feixing, Xing Lining, Zhou Yu. Adversarial Simulation Testing Algorithm for SVM Based on Multi-objective Evolutionary Optimization [J]. Journal of System Simulation, 2024, 36(9): 2016-2031. |
[2] | Wu Peng, Yang Zongmo, Jing Qianfeng, Li Yulin. A Hybrid Empirical Method for Fast Modeling of Ship Manoeuvring Motion [J]. Journal of System Simulation, 2023, 35(10): 2150-2160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||