Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (12): 2560-2569.doi: 10.16182/j.issn1004731x.joss.22-0791
• Papers • Previous Articles Next Articles
Received:2022-07-07
Revised:2023-01-14
Online:2023-12-15
Published:2023-12-12
CLC Number:
Zheng Youlian, Lei Deming. Unrelated Parallel Machine Scheduling with Additional Resource and Learning Effect[J]. Journal of System Simulation, 2023, 35(12): 2560-2569.
Table 2
Computational results of five algorithms on min
| 实例 | DABC | ABC | TAFOA | HPSOGA | MPH | 实例 | DABC | ABC | TAFOA | HPSOGA | MPH |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 210.5 | 210.5 | 237.9 | 290.8 | 210.5 | 800.3 | 854.1 | 845.8 | 1 012.6 | 876.1 | ||
| 246.2 | 246.2 | 246.3 | 253.5 | 246.2 | 643.2 | 668.5 | 656.1 | 713.0 | 663.4 | ||
| 114.3 | 114.3 | 120.3 | 129.1 | 126.0 | 354.2 | 380.0 | 375.5 | 410.1 | 416.1 | ||
| 114.8 | 114.8 | 133.4 | 146.1 | 135.7 | 326.6 | 370.2 | 348.5 | 363.4 | 316.7 | ||
| 103.0 | 103.0 | 103.0 | 103.0 | 103.0 | 292.1 | 319.2 | 317.8 | 341.3 | 343.9 | ||
| 106.0 | 106.0 | 106.0 | 106.0 | 106.0 | 246.5 | 260.7 | 261.4 | 285.4 | 267.0 | ||
| 228.2 | 230.2 | 257.4 | 288.6 | 241.6 | 266.8 | 306.4 | 296.6 | 339.8 | 289.4 | ||
| 401.9 | 478.5 | 428.0 | 443.5 | 402.1 | 260.2 | 287.6 | 281.1 | 311.5 | 287.8 | ||
| 209.6 | 252.2 | 215.5 | 231.8 | 236.5 | 191.0 | 222.6 | 213.5 | 249.8 | 222.6 | ||
| 186.0 | 209.0 | 195.2 | 204.6 | 185.5 | 149.8 | 177.7 | 163.5 | 202.3 | 170.6 | ||
| 140.0 | 143.0 | 149.3 | 217.6 | 152.3 | 122.0 | 144.5 | 133.9 | 194.8 | 142.8 | ||
| 139.3 | 141.1 | 155.5 | 212.6 | 153.3 | 115.2 | 143.8 | 140.1 | 208.6 | 143.4 | ||
| 390.3 | 493.7 | 391.8 | 503.7 | 407.5 | 822.1 | 901.2 | 882.7 | 1 047.2 | 1 000.5 | ||
| 422.4 | 451.4 | 422.4 | 507.9 | 432.9 | 721.9 | 775.4 | 730.6 | 869.8 | 730.7 | ||
| 265.3 | 337.8 | 274.1 | 339.1 | 318.2 | 484.7 | 494.1 | 446.8 | 587.3 | 502.9 | ||
| 195.3 | 210.5 | 198.2 | 221.1 | 196.8 | 424.9 | 446.9 | 440.1 | 523.2 | 553.0 | ||
| 133.5 | 154.4 | 147.7 | 159.7 | 140.1 | 331.2 | 347.8 | 334.5 | 482.9 | 470.8 | ||
| 141.9 | 163.3 | 159.4 | 165.8 | 147.5 | 275.1 | 352.8 | 307.0 | 427.4 | 515.4 | ||
| 451.2 | 547.9 | 502.2 | 500.4 | 453.2 | 1 283.6 | 1 521.3 | 1 373.1 | 1 615.2 | 1 400.2 | ||
| 463.4 | 496.5 | 465.7 | 539.1 | 529.7 | 1 173.6 | 1 263.1 | 1 248.3 | 1 420.5 | 1 561.5 | ||
| 322.3 | 422.3 | 334.7 | 399.7 | 386.7 | 746.4 | 835.2 | 725.8 | 860.0 | 945.1 | ||
| 263.3 | 290.3 | 276.6 | 290.3 | 287.8 | 728.7 | 884.2 | 863.4 | 868.6 | 743.3 | ||
| 199.3 | 209.2 | 210.1 | 239.3 | 207.9 | 592.8 | 784.3 | 648.5 | 801.7 | 614.6 | ||
| 186.3 | 197.7 | 178.2 | 198.1 | 194.3 | 561.3 | 642.6 | 581.2 | 721.8 | 745.7 | ||
| 573.4 | 720.2 | 593.1 | 685.6 | 592.1 | 1 923.2 | 2 263.8 | 2 031.1 | 2 334.9 | 2 139.3 | ||
| 581.2 | 589.6 | 587.0 | 600.7 | 624.5 | 1 786.0 | 1 980.5 | 1 874.2 | 2 257.2 | 1 854.7 | ||
| 305.3 | 430.1 | 369.7 | 363.8 | 352.9 | 1 078.8 | 1 305.3 | 1 154.1 | 1 341.6 | 1 052.0 | ||
| 362.2 | 398.6 | 389.5 | 374.3 | 378.3 | 947.1 | 1 156.1 | 1 013.2 | 1 083.2 | 1 337.1 | ||
| 211.2 | 241.3 | 221.3 | 260.3 | 246.8 | 782.4 | 1 266.5 | 866.7 | 1 038.7 | 899.4 | ||
| 194.0 | 208.0 | 215.0 | 237.3 | 216.9 | 675.8 | 914.6 | 780.1 | 861.6 | 834.0 |
Table 3
Computational results of five algorithms on avg
| 实例 | DABC | ABC | TAFOA | HPSOGA | MPH | 实例 | DABC | ABC | TAFOA | HPSOGA | MPH |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 210.5 | 211.0 | 239.8 | 300.9 | 216.2 | 813.3 | 893.6 | 858.6 | 1 020.1 | 879.5 | ||
| 246.2 | 246.2 | 248.2 | 261.5 | 246.2 | 652.6 | 681.6 | 664.2 | 720.2 | 680.7 | ||
| 114.3 | 114.8 | 132.3 | 131.1 | 126.0 | 362.1 | 390.3 | 388.9 | 430.9 | 439.1 | ||
| 114.8 | 114.8 | 148.1 | 148.0 | 144.9 | 331.9 | 377.6 | 353.5 | 370.9 | 329.0 | ||
| 103.0 | 103.0 | 108.2 | 104.8 | 104.2 | 299.0 | 335.2 | 327.8 | 359.2 | 368.7 | ||
| 106.0 | 106.0 | 106.2 | 106.5 | 106.3 | 248.7 | 271.8 | 281.7 | 288.2 | 284.9 | ||
| 228.6 | 235.3 | 264.8 | 295.7 | 260.3 | 286.8 | 320.3 | 308.0 | 361.9 | 306.3 | ||
| 408.4 | 481.2 | 431.8 | 452.3 | 404.8 | 265.3 | 295.3 | 290.0 | 313.3 | 293.8 | ||
| 215.3 | 264.2 | 222.4 | 246.3 | 243.9 | 199.6 | 230.0 | 222.5 | 262.2 | 228.8 | ||
| 187.9 | 216.2 | 207.4 | 209.4 | 191.0 | 159.2 | 187.4 | 178.2 | 216.9 | 180.0 | ||
| 142.1 | 145.5 | 158.1 | 229.0 | 159.4 | 125.7 | 150.3 | 145.0 | 211.1 | 148.6 | ||
| 141.9 | 147.8 | 164.0 | 217.0 | 161.7 | 121.1 | 148.6 | 146.8 | 222.9 | 150.2 | ||
| 394.8 | 498.3 | 397.3 | 516.5 | 421.6 | 829.9 | 918.5 | 901.9 | 1 055.7 | 1 004.1 | ||
| 424.2 | 455.1 | 428.5 | 512.1 | 438.4 | 737.7 | 788.8 | 746.0 | 875.2 | 754.4 | ||
| 273.1 | 347.9 | 287.8 | 347.0 | 335.6 | 495.0 | 507.3 | 455.5 | 591.2 | 507.5 | ||
| 198.1 | 222.8 | 205.4 | 231.5 | 205.4 | 426.9 | 470.0 | 441.8 | 544.0 | 561.5 | ||
| 139.1 | 165.2 | 162.9 | 168.7 | 150.2 | 337.9 | 364.0 | 345.8 | 487.2 | 485.2 | ||
| 143.7 | 170.0 | 169.3 | 173.2 | 151.6 | 285.3 | 357.3 | 322.8 | 437.3 | 524.8 | ||
| 455.0 | 551.6 | 517.4 | 503.3 | 463.6 | 1 288.9 | 1 552.1 | 1 397.5 | 1 624.8 | 1 406.5 | ||
| 467.4 | 510.8 | 477.8 | 544.2 | 538.3 | 1 178.6 | 1 267.9 | 1 252.2 | 1 427.2 | 1 569.3 | ||
| 330.7 | 429.1 | 345.7 | 421.0 | 388.1 | 755.0 | 841.0 | 739.5 | 863.5 | 952.8 | ||
| 266.6 | 309.1 | 280.1 | 299.3 | 310.9 | 735.7 | 888.6 | 867.6 | 874.7 | 752.9 | ||
| 201.3 | 216.9 | 240.5 | 259.2 | 217.4 | 597.2 | 790.4 | 651.3 | 808.8 | 620.4 | ||
| 189.4 | 202.5 | 183.1 | 204.0 | 202.8 | 565.2 | 649.8 | 591.4 | 745.3 | 757.7 | ||
| 582.2 | 740.0 | 600.7 | 693.3 | 601.7 | 1 929.7 | 2 275.8 | 2 052.2 | 2 340.9 | 2 144.7 | ||
| 584.6 | 596.2 | 593.7 | 608.9 | 649.2 | 1 819.3 | 1 985.2 | 1 882.6 | 2 264.8 | 1 861.6 | ||
| 310.6 | 440.5 | 391.3 | 376.1 | 363.6 | 1 084.5 | 1 310.9 | 1 158.2 | 1 346.7 | 1 055.7 | ||
| 369.1 | 405.5 | 398.4 | 383.2 | 389.9 | 959.8 | 1 167.3 | 1 022.0 | 1 089.2 | 1 346.9 | ||
| 216.9 | 252.9 | 230.7 | 266.0 | 253.9 | 790.6 | 1 271.7 | 870.3 | 1 048.9 | 908.4 | ||
| 198.1 | 211.9 | 227.7 | 244.6 | 229.8 | 683.4 | 919.6 | 792.2 | 870.2 | 839.4 |
Table 4
Computational results of five algorithms on max
| 实例 | DABC | ABC | TAFOA | HPSOGA | MPH | 实例 | DABC | ABC | TAFOA | HPSOGA | MPH |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 210.5 | 211.2 | 240.2 | 310.2 | 220.3 | 831.1 | 917.3 | 1 003.0 | 1 089.4 | 1 176.8 | ||
| 246.2 | 246.2 | 249.3 | 263.0 | 246.2 | 655.3 | 685.9 | 716.0 | 746.8 | 778.6 | ||
| 114.3 | 115.9 | 140.3 | 165.4 | 126.0 | 364.2 | 395.7 | 426.7 | 458.4 | 491.1 | ||
| 114.8 | 114.8 | 155.9 | 197.7 | 240.5 | 335.3 | 385.3 | 434.8 | 485.0 | 334.9 | ||
| 103.0 | 103.0 | 111.1 | 119.9 | 129.7 | 305.2 | 353.9 | 402.1 | 451.0 | 500.9 | ||
| 106.0 | 106.0 | 106.8 | 108.3 | 110.8 | 249.3 | 280.5 | 311.2 | 342.6 | 375.0 | ||
| 229.0 | 239.7 | 277.3 | 315.6 | 354.9 | 299.2 | 334.2 | 368.7 | 403.9 | 440.1 | ||
| 412.9 | 485.5 | 557.6 | 630.4 | 704.2 | 270.5 | 300.9 | 330.8 | 361.4 | 393.0 | ||
| 218.3 | 269.3 | 319.8 | 371.0 | 423.2 | 203.2 | 237.7 | 271.7 | 306.4 | 342.1 | ||
| 188.9 | 220.1 | 250.8 | 282.2 | 314.6 | 162.3 | 195.9 | 229.0 | 262.8 | 297.6 | ||
| 144.3 | 148.3 | 151.8 | 156.0 | 161.2 | 130.7 | 155.3 | 179.4 | 204.2 | 230.0 | ||
| 143.6 | 150.3 | 156.5 | 163.4 | 171.3 | 124.8 | 153.7 | 182.1 | 211.2 | 241.3 | ||
| 398.3 | 500.2 | 601.6 | 703.7 | 806.8 | 837.5 | 926.3 | 1 014.6 | 1 103.6 | 1 193.6 | ||
| 425.9 | 459.3 | 492.2 | 525.8 | 560.4 | 750.3 | 803.5 | 856.2 | 909.6 | 964.0 | ||
| 277.3 | 356.1 | 434.4 | 513.4 | 593.4 | 506.1 | 511.9 | 517.2 | 523.2 | 530.2 | ||
| 200.7 | 232.4 | 263.6 | 295.5 | 328.4 | 429.3 | 482.3 | 534.8 | 588.0 | 642.2 | ||
| 142.7 | 169.9 | 196.6 | 224.0 | 252.4 | 340.2 | 377.3 | 413.9 | 451.2 | 489.5 | ||
| 145.2 | 180.8 | 215.9 | 251.7 | 288.5 | 295.3 | 362.8 | 429.8 | 497.5 | 566.2 | ||
| 456.0 | 556.3 | 656.1 | 756.6 | 858.1 | 1 299.8 | 1 578.1 | 1 855.9 | 2 134.4 | 2 413.9 | ||
| 469.1 | 515.1 | 560.6 | 606.8 | 654.0 | 1 182.2 | 1 280.0 | 1 377.3 | 1 475.3 | 15 74.3 | ||
| 335.2 | 533.2 | 730.7 | 928.9 | 1 128.1 | 759.6 | 855.1 | 950.1 | 1 045.8 | 1 142.5 | ||
| 268.7 | 319.2 | 369.2 | 419.9 | 471.6 | 743.2 | 899.3 | 1 054.9 | 1 211.2 | 1 368.5 | ||
| 203.6 | 221.8 | 239.5 | 257.9 | 277.3 | 599.9 | 799.1 | 997.8 | 1 197.2 | 1 397.6 | ||
| 193.7 | 208.7 | 223.2 | 238.4 | 254.6 | 567.8 | 657.3 | 746.3 | 836.0 | 926.7 | ||
| 585.3 | 766.3 | 946.8 | 1 128.0 | 1 310.2 | 1 935.2 | 2 288.2 | 2 640.7 | 2 993.9 | 3 348.1 | ||
| 588.3 | 600.3 | 611.8 | 624.0 | 637.2 | 1 840.9 | 1 990.5 | 2 139.6 | 2 289.4 | 2 440.2 | ||
| 320.6 | 453.2 | 585.3 | 718.1 | 851.9 | 1 095.0 | 1 314.9 | 1 534.3 | 1 754.4 | 1 975.5 | ||
| 375.2 | 411.1 | 446.5 | 482.6 | 519.7 | 968.1 | 1 177.6 | 1 386.6 | 1 596.3 | 1 807.0 | ||
| 220.3 | 262.3 | 303.8 | 346.0 | 389.2 | 800.1 | 1 277.2 | 1 753.8 | 2 231.1 | 2 709.4 | ||
| 199.3 | 213.4 | 227.0 | 241.3 | 256.6 | 689.4 | 922.3 | 1 154.7 | 1 387.8 | 1 621.9 |
| 1 | Cheng T C E, Sin C C S. A State-of-the-art Review of Parallel-machine Scheduling Research[J]. European Journal of Operational Research, 1990, 47(3): 271-292. |
| 2 | Zheng Xiaolong, Wang Ling. A Two-stage Adaptive Fruit Fly Optimization Algorithm for Unrelated Parallel Machine Scheduling Problem with Additional Resource Constraints[J]. Expert Systems with Applications, 2016, 65: 28-39. |
| 3 | Fanjul-Peyro L, Perea F, Ruiz Rubén. Models and Matheuristics for the Unrelated Parallel Machine Scheduling Problem with Additional Resources[J]. European Journal of Operational Research, 2017, 260(2): 482-493. |
| 4 | Yepes-Borrero J C, Villa F, Perea F, et al. GRASP Algorithm for the Unrelated Parallel Machine Scheduling Problem with Setup Times and Additional Resources[J]. Expert Systems with Applications, 2020, 141: 112959. |
| 5 | Lei Deming, He Shaosi. An Adaptive Artificial Bee Colony for Unrelated Parallel Machine Scheduling with Additional Resource and Maintenance[J]. Expert Systems with Applications, 2022, 205: 117577. |
| 6 | Soleimani H, Ghaderi H, Tsai P W, et al. Scheduling of Unrelated Parallel Machines Considering Sequence-related Setup Time, Start Time-dependent Deterioration, Position-dependent Learning and Power Consumption Minimization[J]. Journal of Cleaner Production, 2020, 249: 119428. |
| 7 | Zhang Like, Deng Qianwang, Lin Ruihang, et al. A Combinatorial Evolutionary Algorithm for Unrelated Parallel Machine Scheduling Problem with Sequence and Machine-dependent Setup Times, Limited Worker Resources and Learning Effect[J]. Expert Systems with Applications, 2021, 175: 114843. |
| 8 | 轩华, 张寒, 王薛苑. 带恶化和学习效应的不相关并行机调度优化[J]. 控制工程, 2023, 30(5): 769-778. |
| Xuan Hua, Zhang Han, Wang Xueyuan. Optimization on Unrelated Parallel Machine Scheduling with Deteriorating and Learning Effects[J]. Control Engineering of China, 2023, 30(5): 769-778. | |
| 9 | Sharma N, Sharma H, Sharma A. Beer Froth Artificial Bee Colony Algorithm for Job-shop Scheduling Problem[J]. Applied Soft Computing, 2018, 68: 507-524. |
| 10 | Lin W C, Xu Jianyou, Bai Danyu, et al. Artificial Bee Colony Algorithms for the Order Scheduling with Release Dates[J]. Soft Computing, 2019, 23(18): 8677-8688. |
| 11 | Lei Deming, Yuan Yue, Cai Jingcao. An Improved Artificial Bee Colony for Multi-objective Distributed Unrelated Parallel Machine Scheduling[J]. International Journal of Production Research, 2021, 59(17): 5259-5271. |
| 12 | Zhang Rui, Chang P C, Song Shiji, et al. A Multi-objective Artificial Bee Colony Algorithm for Parallel Batch-processing Machine Scheduling in Fabric Dyeing Processes[J]. Knowledge-Based Systems, 2017, 116: 114-129. |
| 13 | Cao Yang, Shi Haibo. An Adaptive Multi-strategy Artificial Bee Colony Algorithm for Integrated Process Planning and Scheduling[J]. IEEE Access, 2021, 9: 65622-65637. |
| 14 | Liu Qihao, Li Xinyu, Gao Liang, et al. Mathematical Model and Discrete Artificial Bee Colony Algorithm for Distributed Integrated Process Planning and Scheduling[J]. Journal of Manufacturing Systems, 2021, 61: 300-310. |
| 15 | Ying K C, Lin S W. Unrelated Parallel Machine Scheduling with Sequence-and Machine-dependent Setup Times and Due Date Constraints[J]. International Journal of Innovative Computing, Information & Control, 2012, 8(5): 3279-3297. |
| 16 | Lin S W, Ying K C. ABC-based Manufacturing Scheduling for Unrelated Parallel Machines with Machine-dependent and Job Sequence-dependent Setup Times[J]. Computers & Operations Research, 2014, 51: 172-181. |
| 17 | 雷德明, 杨海. 求解多目标不相关并行机调度问题的多群体人工蜂群算法[J]. 控制与决策, 2022, 37(5): 1174-1182. |
| Lei Deming, Yang Hai. Multi-colony Artificial Bee Colony Algorithm for Multi-objective Unrelated Parallel Machine Scheduling Problem[J]. Control and Decision, 2022, 37(5): 1174-1182. | |
| 18 | Lu Shaojun, Liu Xinbao, Pei Jun, et al. A Hybrid ABC-TS Algorithm for the Unrelated Parallel-batching Machines Scheduling Problem with Deteriorating Jobs and Maintenance Activity[J]. Applied Soft Computing, 2018, 66: 168-182. |
| 19 | Villa F, Vallada E, Fanjul-Peyro L. Heuristic Algorithms for the Unrelated Parallel Machine Scheduling Problem with One Scarce Additional Resource[J]. Expert Systems with Applications, 2018, 93: 28-38. |
| 20 | Salehi Mir M S, Rezaeian J. A Robust Hybrid Approach Based on Particle Swarm Optimization and Genetic Algorithm to Minimize the Total Machine Load on Unrelated Parallel Machines[J]. Applied Soft Computing, 2016, 41: 488-504. |
| [1] | Liu Weihong, Zhao Sixiang, Zhang Dali, Jiang Zhenhui. Dynamic Order Scheduling for Pick-and-pass System Considering Workload Balance and Learning Effects [J]. Journal of System Simulation, 2025, 37(10): 2613-2629. |
| [2] | Wang Hui, Peng Le. Improved Multi-objective Swarm Algorithm to Optimize Wash-out Motion and its Simulation Experiment [J]. Journal of System Simulation, 2024, 36(2): 436-448. |
| [3] | Chuandong Qin, Baosheng Li, Baole Han. Multi-strategy Hybrid ABC for Microarray High-Dimensional Feature Selection [J]. Journal of System Simulation, 2023, 35(3): 515-524. |
| [4] | Qing Dongsheng, Zhang Xiaofang, Li Jianjun, Guo Rui, Deng Qiaoling. Spatial Structure Optimization of Natural Forest Based on Bee Colony-particle Swarm Algorithm [J]. Journal of System Simulation, 2020, 32(3): 371-381. |
| [5] | Guo Xudong, Lu Zhengping, Jiang Qinfen, Wang Shuyi, Cui Haipo. Algorithm for Tracking Position and Orientation of Drug Delivery Capsules in Gastrointestinal Tract [J]. Journal of System Simulation, 2018, 30(6): 2288-2294. |
| [6] | Yang Xiaojian, Dong Yiwei. Adaptive Quick Artificial Bee Colony Algorithm Based on Opposition Learning [J]. Journal of System Simulation, 2016, 28(11): 2684-2692. |
| [7] | Zhang Ming, Tian Na, Ji Zhicheng. Balanced Bee Colony Algorithm Based on Fitness Euclidean-distance Ratio [J]. Journal of System Simulation, 2015, 27(5): 980-989. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
