Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (1): 11-26.doi: 10.16182/j.issn1004731x.joss.21-0968
• Papers • Previous Articles Next Articles
Damin Zhang1(), Yi Wang1(
), Linna Zhang2
Received:
2021-09-16
Revised:
2021-11-10
Online:
2023-01-30
Published:
2023-01-18
Contact:
Yi Wang
E-mail:1203813362@qq.com;ywang_gzu@163.com
CLC Number:
Damin Zhang, Yi Wang, Linna Zhang. Chameleon Swarm Algorithm for Segmental Variation Learning of Population and S-type Weight[J]. Journal of System Simulation, 2023, 35(1): 11-26.
Table 3
Information of 14 classical test functions
函数名称 | 函数公式 | 特征 | 取值空间 | 最优取值 |
---|---|---|---|---|
Sphere | US | [-100, 100] | 0 | |
Schwefel 2.22 | US | [-100, 100] | 0 | |
Schwefel 1.2 | UN | [-100, 100] | 0 | |
Schwefel 2.21 | US | [-100, 100] | 0 | |
Rosenbrock | UN | [-30, 30] | 0 | |
Quartic | US | [-1.28, 1.28] | 0 | |
Rastrigin | MS | [-5.12, 5.12] | 0 | |
Ackley | MN | [-32, 32] | 0 | |
Griewank | MN | [-600, 600] | 0 | |
Penalized 2 | MN | [-50, 50] | 0 | |
Foxholes | MN | [-65.53, 65.53] | ||
Kowalik | MN | [-5, 5] | 3.075 | |
Branin | MN | 0.398 | ||
Hartman | MS | [0,1] | -3.32 |
Table 4
Comparison of test functions of different policies in different dimensions
函数 | 算法名 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 耗时/s | 平均值 | 标准差 | 耗时/s | 平均值 | 标准差 | 耗时/s | ||
CSA | 5.71×10-10 | 1.44×10-10 | 1.66 | 3.37×10-7 | 1.31×10-7 | 6.60 | 3.28×10-6 | 5.32×10-7 | 10.67 | |
RCSA | 2.97×10-90 | 1.57×10-89 | 1.82 | 3.71×10-86 | 1.45×10-85 | 6.89 | 6.03×10-89 | 3.28×10-88 | 12.46 | |
MCSA | 2.2×10-163 | 6.4×10-162 | 1.65 | 4.3×10-117 | 9.9×10-117 | 6.71 | 1.2×10-116 | 6.6×10-116 | 13.55 | |
SCSA | 4.48×10-78 | 2.37×10-77 | 1.71 | 1.31×10-34 | 4.56×10-32 | 7.01 | 3.97×10-21 | 3.38×10-20 | 11.62 | |
RMSCSA | 0 | 0 | 1.88 | 0 | 0 | 7.51 | 0 | 0 | 11.65 | |
CSA | 1.51×10-6 | 6.84×10-6 | 1.67 | 2.47 | 3.13 | 6.58 | 1.31×102 | 8.40×10 | 10.54 | |
RCSA | 4.78×10-44 | 2.57×10-43 | 1.81 | 2.75×10-43 | 1.49×10-42 | 6.61 | 5.84×10-45 | 3.18×10-44 | 11.28 | |
MCSA | 5.13×10-84 | 2.32×10-83 | 2.10 | 2.37×10-61 | 6.22×10-61 | 7.56 | 2.23×10-65 | 1.09×10-64 | 11.25 | |
SCSA | 2.35×10-35 | 6.32×10-33 | 1.71 | 6.19×10-18 | 4.48×10-17 | 6.84 | 2.36×10-13 | 1.84×10-12 | 11.22 | |
RMSCSA | 1.3×10-197 | 3.2×10-195 | 2.15 | 1.1×10-188 | 1.1×10-187 | 6.77 | 2.12×10-99 | 7.9×10-99 | 11.32 | |
CSA | 3.92×10-7 | 9.31×10-7 | 1.77 | 7.88 | 9.53 | 7.00 | 4.39×103 | 1.09×103 | 11.02 | |
RCSA | 8.64×10-91 | 3.11×10-90 | 2.03 | 2.23×10-83 | 1.22×10-82 | 6.95 | 2.95×10-82 | 1.16×10-81 | 10.99 | |
MCSA | 5.7×10-113 | 4.5×10-112 | 1.88 | 1.14×10-75 | 5.39×10-75 | 7.51 | 4.55×10-77 | 2.49×10-76 | 11.43 | |
SCSA | 2.03×10-79 | 3.72×10-78 | 1.81 | 9.42×10-31 | 1.69×10-29 | 7.22 | 3.38×10-37 | 2.94×10-35 | 11.33 | |
RMSCSA | 0 | 0 | 2.02 | 0 | 0 | 7.35 | 3.0×10-281 | 9.1×10-281 | 11.19 | |
CSA | 1.14×10-5 | 7.20×10-6 | 1.67 | 3.50×10-3 | 6.50×10-3 | 6.69 | 2.25×10-2 | 2.14×10-2 | 10.50 | |
RCSA | 4.75×10-45 | 2.54×10-44 | 1.83 | 5.65×10-43 | 3.09×10-42 | 6.89 | 5.78×10-45 | 2.28×10-44 | 10.79 | |
MCSA | 2.41×10-80 | 8.67×10-80 | 2.16 | 2.33×10-37 | 1.27×10-36 | 8.12 | 5.08×10-51 | 5.77×10-50 | 10.20 | |
SCSA | 3.79×10-44 | 1.39×10-44 | 1.72 | 2.61×10-17 | 2.63×10-18 | 6.88 | 7.59×10-15 | 3.36×10-16 | 9.95 | |
RMSCSA | 4.5×10-178 | 3.6×10-178 | 2.11 | 6.3×10-182 | 3.3×10-181 | 6.91 | 5.7×10-178 | 2.9×10-176 | 10.07 | |
CSA | 1.95 | 4.68 | 1.71 | 2.46 | 2.59 | 6.69 | 2.51×102 | 3.81×102 | 10.59 | |
RCSA | 4.06×10-7 | 7.73×10-6 | 2.01 | 1.81×10-5 | 4.04×10-5 | 7.03 | 5.29×10-5 | 1.03×10-4 | 11.83 | |
MCSA | 8. 2×10-4 | 7.54×10-3 | 2.06 | 2.89×10-2 | 1.70×10-2 | 7.24 | 4.0×10-7 | 3.31×10-5 | 11.56 | |
SCSA | 1.11 | 7.51×10-1 | 1.72 | 2.86 | 2.14×10-1 | 7.89 | 4.87 | 4.89 | 11.21 | |
RMSCSA | 1.40×10-9 | 1.62×10-9 | 2.39 | 1.92×10-9 | 3.21×10-7 | 7.21 | 2.63×10-7 | 8.61×10-5 | 11.31 | |
CSA | 3.55 | 3.02 | 1.68 | 1.26×102 | 2.21×10 | 6.62 | 5.45×102 | 5.36×10 | 10.52 | |
RCSA | 3.26×10-5 | 4.31×10-5 | 1.96 | 2.49×10-5 | 2.28×10-5 | 6.71 | 2.65×10-5 | 3.95×10-5 | 12.51 | |
MCSA | 4.17×10-5 | 2.27×10-5 | 2.21 | 2.53×10-5 | 2.14×10-6 | 6.55 | 1.38×10-7 | 1.03×10-6 | 11.85 | |
SCSA | 1.21×10-2 | 4.10×10-1 | 1.95 | 2.98×10-2 | 5.58×10-1 | 6.55 | 5.36×10-2 | 1.17×10-2 | 11.29 | |
RMSCSA | 3.61×10-7 | 1.25×10-7 | 2.44 | 2.62×10-6 | 1.77×10-5 | 6.52 | 1.37×10-7 | 1.00×10-6 | 11.18 | |
CSA | 9.44×10-1 | 1.15 | 1.67 | 1.39×10 | 2.75×10 | 6.05 | 3.11×102 | 1.94×10 | 10.63 | |
RCSA | 0 | 0 | 1.96 | 0 | 0 | 6.56 | 0 | 0 | 11.02 | |
MCSA | 0 | 0 | 2.12 | 0 | 0 | 6.71 | 0 | 0 | 11.43 | |
SCSA | 3.85×10-98 | 2.95×10-97 | 1.81 | 2.55×10-97 | 1.78×10-96 | 6.96 | 0 | 0 | 11.41 | |
RMSCSA | 0 | 0 | 2.09 | 0 | 0 | 6.31 | 0 | 0 | 12.69 | |
CSA | 2.92×10-5 | 2.32×10-6 | 1.71 | 1.02 | 1.54 | 6.03 | 1.91 | 1.02×10-1 | 10.64 | |
RCSA | 8.88×10-16 | 8.88×10-16 | 2.00 | 8.88×10-16 | 8.88×10-16 | 6.21 | 8.88×10-16 | 8.88×10-16 | 12.08 | |
MCSA | 8.88×10-16 | 8.88×10-16 | 2.05 | 8.88×10-16 | 8.88×10-16 | 6.05 | 8.88×10-16 | 8.88×10-16 | 10.66 | |
SCSA | 8.88×10-16 | 8.88×10-16 | 1.77 | 2.04×10-12 | 2.47×10-12 | 6.22 | 7.26×10-13 | 5.47×10-12 | 11.03 | |
RMSCSA | 8.88×10-16 | 8.88×10-16 | 2.07 | 8.88×10-16 | 8.88×10-16 | 6.55 | 8.88×10-16 | 8.88×10-16 | 10.68 | |
CSA | 5.65×10-1 | 4.37×10-1 | 1.72 | 1.33×10-4 | 3.12×10-4 | 6.15 | 2.79×10-3 | 6.19×10-3 | 10.63 | |
RCSA | 0 | 0 | 1.89 | 0 | 0 | 6.04 | 0 | 0 | 11.00 | |
MCSA | 0 | 1.6×10-311 | 2.00 | 4.05×10-211 | 3.87×10-209 | 6.29 | 1.4×10-266 | 9.5×10-264 | 11.52 | |
SCSA | 0 | 0 | 1.91 | 0 | 0 | 6.22 | 0 | 0 | 10.99 | |
RMSCSA | 0 | 0 | 2.00 | 0 | 0 | 6.49 | 0 | 0 | 10.71 | |
CSA | 1.90×10-11 | 8.75×10-11 | 1.97 | 9.53×10-8 | 3.60×10-8 | 6.56 | 3.70×10-4 | 2.01×10-3 | 11.26 | |
RCSA | 1.51×10-8 | 1.44×10-7 | 2.10 | 1.12×10-10 | 1.74×10-8 | 7.06 | 6.95×10-8 | 1.17×10-8 | 12.28 | |
MCSA | 4.21×10-23 | 2.20×10-20 | 2.30 | 2.99×10-8 | 5.83×10-8 | 6.89 | 4.99×10-8 | 1.66×10-9 | 12.09 | |
SCSA | 3.85×10-10 | 7.06×10-8 | 2.03 | 2.56×10-8 | 1.31×10-8 | 6.66 | 4.27×10-5 | 4.98×10-4 | 11.76 | |
RMSCSA | 3.51×10-26 | 1.18×10-24 | 2.51 | 1.57×10-10 | 1.18×10-8 | 7.05 | 7.55×10-13 | 1.43×10-12 | 11.81 |
Table 5
Optimization comparison in fixed dimensions
函数 | 算法名称 | 平均值 | 标准差 | 耗时/s | 维度 |
---|---|---|---|---|---|
CSA | 9.979×10-1 | 2.23×10-4 | 1.28 | 2 | |
RCSA | 9.980×10-1 | 5.90×10-11 | 1.45 | 2 | |
MCSA | 9.981×10-1 | 6.20×10-2 | 1.38 | 2 | |
SCSA | 9.980×10-1 | 2.55×10-8 | 1.45 | 2 | |
RMSCSA | 9.982×10-1 | 4.38×10-16 | 1.55 | 2 | |
CSA | 5.110×10-4 | 4.99×10-3 | 1.27 | 4 | |
RCSA | 3.117×10-4 | 5.53×10-3 | 1.36 | 4 | |
MCSA | 3.083×10-4 | 6.58×10-3 | 1.92 | 4 | |
SCSA | 3.100×10-4 | 2.87×10-4 | 1.37 | 4 | |
RMSCSA | 3.079×10-4 | 2.38×10-6 | 1.81 | 4 | |
CSA | 3.974×10-1 | 1.55×10-2 | 0.22 | 2 | |
RCSA | 3.978×10-1 | 1.20 | 0.21 | 2 | |
MCSA | 3.986×10-1 | 8.21×10-2 | 0.29 | 2 | |
SCSA | 3.978×10-1 | 3.62×10-5 | 0.24 | 2 | |
RMSCSA | 3.978×10-1 | 2.98×10-6 | 0.36 | 2 | |
CSA | -3.322 | 3.01×10-2 | 1.37 | 6 | |
RCSA | -3.324 | 5.80×10-9 | 1.54 | 6 | |
MCSA | -3.320 | 1.99×10-1 | 1.79 | 6 | |
SCSA | -3.322 | 6.75×10-2 | 1.97 | 6 | |
RMSCSA | -3.320 | 7.25×10-8 | 1.94 | 6 |
Table 6
CEC 2017 test set function information
函数名 | 维度 | 取值空间 | 特征 | 优化最优值 |
---|---|---|---|---|
CEC04 | 30 | [-100, 100] | MS | 400 |
CEC05 | 30 | [-100, 100] | MN | 500 |
CEC08 | 30 | [-100, 100] | MN | 800 |
CEC16 | 30 | [-100, 100] | HF | 1 600 |
CEC17 | 30 | [-100, 100] | HF | 1 700 |
CEC20 | 30 | [-100, 100] | HF | 2 000 |
CEC21 | 30 | [-100, 100] | CF | 2 100 |
CEC23 | 30 | [-100, 100] | CF | 2 300 |
CEC27 | 30 | [-100, 100] | CF | 2 700 |
CEC29 | 30 | [-100, 100] | CF | 2 900 |
Table 7
Performance comparison of various algorithms under CEC 2017 test
函数名 | 评价指标 | RMSCSA | CSA | RCSA | MCSA | SCSA | SSA | WOA |
---|---|---|---|---|---|---|---|---|
CEC04 | 平均值 | 4.705 2×102 | 2.120 8×103 | 7.353 7×102 | 4.724 4×102 | 7.489 6×102 | 6.425 5×102 | 6.890 7×102 |
标准差 | 7.298×10-4 | 1.628×10 | 1.587×10-4 | 1.698×10 | 1.093×102 | 2.055×10 | 6.773×10 | |
耗时/s | 4.08 | 6.32 | 2.69 | 3.13 | 2.01 | 1.25 | 0.83 | |
CEC05 | 平均值 | 5.209 7×102 | 1.006 5×10 | 6.885 6×102 | 7.511 1×102 | 5.385 6×102 | 6.970 5×102 | 8.454 6×102 |
标准差 | 1.625×10-5 | 2.013×10 | 1.526×10 | 2.296×10 | 2.160×10 | 3.852×10 | 5.344×10 | |
耗时/s | 3.88 | 6.44 | 2.67 | 3.14 | 2.01 | 1.61 | 0.75 | |
CEC08 | 平均值 | 9.235 5×102 | 1.237 0×103 | 1.237 0×103 | 1.005 9×103 | 1.037 9×103 | 9.958 0×102 | 1.129 4×103 |
标准差 | 2.684×10-5 | 6.200×10-4 | 1.954×10-3 | 2.192×10 | 1.573×10 | 4.910 2×10 | 6.337×10 | |
耗时/s | 3.91 | 2.91 | 2.71 | 4.19 | 2.26 | 1.53 | 0.88 | |
CEC16 | 平均值 | 3.258 6×103 | 6.706 5×103 | 3.749 8×103 | 4.503 9×103 | 3.450 6×103 | 1.855 9×104 | 4.921 2×103 |
标准差 | 3.105×102 | 2.176×103 | 2.112×103 | 3.051×102 | 3.220×102 | 3.771 5×103 | 4.472×102 | |
耗时/s | 3.96 | 3.73 | 2.66 | 4.26 | 2.84 | 1.32 | 0.77 | |
CEC17 | 平均值 | 2.356 9×103 | 2.499 6×104 | 4.446 5×103 | 3.004 0×103 | 2.282 3×103 | 2.966 2×103 | 2.986 8×103 |
标准差 | 3.144×10 | 3.334×104 | 2.781×102 | 8.944×10 | 1.395×102 | 2.836×102 | 2.991×102 | |
耗时/s | 4.11 | 3.96 | 2.78 | 4.37 | 2.93 | 1.55 | 0.56 | |
CEC20 | 平均值 | 2.630 2×103 | 3.646 7×103 | 3.410 6×103 | 3.012 0×103 | 2.758 8×103 | 2.795 5×103 | 3.127 9×103 |
标准差 | 1.361×10 | 1.592×102 | 9.995×10 | 7.638×10 | 2.135×102 | 5.541×103 | 1.823×102 | |
耗时/s | 4.14 | 3.85 | 2.81 | 4.40 | 2.90 | 1.97 | 0.57 | |
CEC21 | 平均值 | 2.610 0×103 | 2.926 4×103 | 2.849 0×103 | 2.604 0×103 | 2.526 2×103 | 2.917 2×103 | 2.831 9×103 |
标准差 | 6.886 | 5.267×10 | 3.944×10 | 2.114×10 | 1.941×10 | 5.541 0×102 | 3.544×10 | |
耗时/s | 4.26 | 3.82 | 3.23 | 4.38 | 3.07 | 1.97 | 0.42 | |
CEC23 | 平均值 | 3.211 7×103 | 4.012 8×103 | 3.781 0×103 | 3.257 7×103 | 3.893 0×103 | 3.698 8×103 | 3.987 5×103 |
标准差 | 4.617×10 | 2.371×102 | 1.298×102 | 4.601×10 | 2.389×102 | 4.629×103 | 1.256×102 | |
耗时/s | 2.95 | 3.76 | 3.16 | 3.45 | 3.36 | 1.45 | 0.95 | |
CEC27 | 平均值 | 3.060 0×103 | 5.167 4×103 | 3.508 0×103 | 5.611 0×103 | 3.302 8×103 | 4.305 7×103 | 4.558 1×103 |
标准差 | 2.015×10 | 3.219×103 | 1.143×102 | 5.111×102 | 3.083×102 | 2.609×10 | 8.075×10 | |
耗时/s | 4.06 | 4.13 | 4.46 | 3.17 | 4.35 | 1.30 | 0.56 | |
CEC29 | 平均值 | 3.652 9×103 | 2.614 1×104 | 8.485 1×103 | 8.485 8×103 | 4.419 8×103 | 4.202 8×103 | 5.034 0×103 |
标准差 | 3.505 | 2.067×104 | 5.081×10 | 5.081×103 | 2.094×102 | 2.024×102 | 5.363×102 | |
耗时/s | 5.70 | 4.09 | 3.07 | 3.07 | 4.12 | 1.28 | 0.42 |
Table 8
Average comparison with other intelligent algorithms
算法 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSCSA | 0 | 2.21×10-179 | 0 | 2.77×10-181 | 1.92×10-5 | 2.39×10-6 | 0 | 8.88×10-16 | 0 | 5.52×10-9 |
MPEA[ | 2.70×10-11 | 2.77×10-91 | 1.52×10-20 | 1.04×10-68 | 6.74×10-12 | 2.35×10-1 | 6.38×10-6 | 2.84×10-13 | 4.3×10-7 | 2.27×10-5 |
SSA[ | 0 | 2.12×10-259 | 0 | 5.72×10-177 | 9.24×10-4 | 1.34×10-4 | 0 | 8.88×10-16 | 0 | 7.17×10-12 |
HCMOIWO[ | 3.17×10-55 | 3.66×10-51 | 5.41×10-10 | 9.34×10-13 | 5.28×10-1 | 8.41×10-3 | 4.62×10-1 | 1.86×10-11 | 3.29×10-2 | 1.35×10-3 |
HCUGOA[ | 0 | 0 | 0 | 3.23×10-176 | 1.78×10-3 | 4.96×10-5 | 0 | 8.88×10-16 | 0 | |
GOBL-RNADE[ | 1.63×10-240 | 1.80×10-126 | 7.15×10-276 | 6.26×10-115 | 5.94×10-2 | 7.70×10-2 | 0 | 0 | 0 | 2.28×10-12 |
WOAEP[ | 1.59×10-96 | 1.27×10-48 | 3.97×10-96 | 1.46×10-49 | 2.89×10 | 2.67×10-4 | 0 | 8.88×10-16 | 0 | 2.99 |
FO-FPA[ | 1.51×10-184 | 5.04×10-93 | 1.23×10-183 | 9.97×10-93 | 2.89×10 | 1.13×10-4 | 0 | 8.88×10-16 | 0 | 9.65×10-6 |
SHDNMRA[ | 1.80×10-60 | 1.80×10-25 | 5.70×10-61 | 8.20×10-24 | 8.00×10-2 | 6.40×10-4 | 8.20×10-10 | 8.20×10-10 | 4.60×10-17 | 3.02×10-7 |
SCCSA[ | 9.22×10-69 | 8.24×10-41 | 4.31×10-13 | 2.15×10-17 | 5.90 | 1.33×10-3 | 5.46 | 8.88×10-16 | 1.34×10-2 | 3.00 |
Table 9
Rank sum test values of classical test functions
函数 | ||||
---|---|---|---|---|
3.00×10-11 | 3.01×10-11 | 3.00×10-11 | 3.00×10-11 | |
3.02×10-11 | 3.02×10-11 | 3.02×10-11 | 3.02×10-11 | |
2.99×10-11 | 2.99×10-11 | 2.99×10-11 | 2.99×10-11 | |
3.02×10-11 | 3.00×10-11 | 3.02×10-11 | 3.00×10-11 | |
2.14×10-9 | 4.04×10-11 | 2.06×10-10 | 1.16×10-10 | |
0.282 | 0.365 | 5.66×10-11 | 3.02×10-11 | |
NA | NA | NA | 1.21×10-12 | |
5.28×10-5 | 3.99×10-3 | NA | 1.21×10-12 | |
NA | 3.68×10-3 | NA | 1.21×10-12 | |
6.84×10-7 | 3.02×10-11 | 1.17×10-9 | 1.21×10-12 | |
0.4247 | 3.02×10-11 | 1.17×10-9 | 1.21×10-12 | |
3.02×10-11 | 1.49×10-4 | 8.15×10-11 | 8.48×10-9 | |
0.595 | 1.23×10-9 | 2.78×10-11 | 1.09×10-12 | |
7.70×10-8 | 5.57×10-10 | 3.02×10-11 | 3.02×10-11 | |
+/-/= | 9/3/2 | 12/1/1 | 11/0/3 | 14/0/0 |
1 | Pramada S K, Archana S O, Sithara S, et al. Grid Search Based SVM Approach for Sea Level Rise[J]. IOP Conference Series: Earth and Environmental Science(S1755-1307), 2020, 581(1): 1-18. |
2 | Ningsih S, Syahputra D. K-Means Algorithm for Clustering Third-party Funds of Conventional Banking[J]. Journal of Physics: Conference Series (S1742-6588), 2021, 1899(1): 18-36. |
3 | Kennedy J, Eberhart R. Particle Swarm Optimization.[C]// International Conference on Neural Net-works. Perth, Australia: IEEE,1995: 1942-1948. |
4 | Gold D E, Holland J H. Genetic Algorithms and Machine Learning[J]. Machine Learning (S0885-6125), 1988, 3(2/3): 95-99. |
5 | Rainer S, Kenneth P. Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization (S0925-5001), 1997, 11(4): 341-359. |
6 | Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Trans on Systems, Man, and Cybernetics. Part B, Cybernetics: a Publication of the IEEE Systems, Man, and Cybernetics Society (S1083-4427), 1996, 26(1): 29-41. |
7 | Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp Swarm Algorithm: A Bio-inspired Optimizer for Engineering Design Problems[J]. Advances in Engineering Software (S0965-9978), 2017, 114(6): 163-191. |
8 | Mirjalili S, Andrew L. The Whale Optimization Algorithm[J]. Advances in Engineering Software (S0965-9978), 2016, 95: 51-67. |
9 | Konstantinos Z, Stelios T. A Mayfly Optimization Algorithm[J]. Computers & Industrial Engineering (S0360-8352), 2020, 145(3): 1-26. |
10 | Shehadeh B M. Chameleon Swarm Algorithm: A Bio-inspired Optimizer for Solving Engineering Design Problems[J]. Expert Systems with Applications (S0957-4174), 2021, 174: 1-24. |
11 | 何庆, 林杰, 徐航. 混合柯西变异和均匀分布的蝗虫优化算法[J]. 控制与决策, 2021, 36(7): 1558-1568. |
He Qing, Lin Jie, Xu Hang. Hybrid Cauchy Mutation and Uniform Distribution of Grasshopper Optimization Algorithm[J]. Control & Decision, 2021, 36(7): 1558-1568. | |
12 | 吴文海, 郭晓峰, 周思羽, 等. 基于随机邻域策略和广义反向学习的自适应差分进化算法[J].系统工程与电子技术, 2021, 43(7): 1928-1942. |
Wu Wenhai, Guo Xiaofeng, Zhou Siyu, et al. Adaptive Differential Evolution Algorithm Based on Stochastic Neighborhood Strategy and Generalized Reverse Learning[J]. Systems Engineering and Electronics, 2021, 43(7): 1928-1942. | |
13 | 范千, 陈振健, 夏樟华. 一种基于折射反向学习机制与自适应控制因子的改进樽海鞘群算法[J]. 哈尔滨工业大学学报, 2020, 52(10): 183-191. |
Fan Qian, Chen Zhenjian, Xia Zhanghua. An Improved Salp Group Algorithm Based on Refraction Reverse Learning Mechanism and Adaptive Control Factor[J]. Journal of Harbin Institute of Technology, 2020, 52(10): 183-191. | |
14 | Roshan E S, Habil M K. Refraction and Reflection from the Interface of Anisotropic Materials[J]. Physical Scripta (S0031-8949), 2019, 94(8): 17-29. |
15 | Karpis G, Han E H, Kumar V. Chameleon: Hierarchical Clustering using Dynamic Modeling (Cover Story)[J]. Computer (S0018-9162), 1999, 32(8): 68-75. |
16 | Li Jingnan, Le Meilong. Improved Whale Optimization Algorithm based on Image Selection[J]. Trans of Nanjing University of Aeronautics and Astronautics (S1005-1120), 2020, 37(S1): 115-123. |
17 | Deb K, Deb D. Analysing Mutation Schemes for Real-Parameter Genetic Algorithms[J]. Int. J. of Artificial Intelligence and Soft Computing (S1755-4950), 2014, 4(1): 1-28. |
18 | Shi Yuhui, Eberhart R C. A Modified Particle Swarm Optimizer[C]// IEEE Int Conf on Evolutionary Computation, 1998: 69-73. |
19 | Pitono J, Soeprijanto A. Hybrid Optimization of Emission and Economic Dispatch by the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization[J]. World Academy of ence Engineering & Technology (S0950-4125), 2009, 60: 315–320. |
20 | Salgotra R, Singh U, Singh G, et al. A Self-Adaptive Hybridized Differential Evolution Naked Mole-Rat Algorithm for Engineering Optimization Problems[J]. Computer Methods in Applied Mechanics and Engineering (S0045-7825), 2021: 383-409. |
21 | 吴凡, 洪思, 杨冰, 等. 曲线递增策略的自适应粒子群算法研究[J].计算机应用研究, 2021, 38(6): 1653-1656, 1661. |
Wu Fan, Hong Si, Yang Bing, et al. Adaptive Particle Swarm Optimization based on Curve Increasing Strategy [J]. Application Research of Computers, 201,38(6):1653-1656, 1661. | |
22 | Liu H T, Du W, Guo Z X. A Multi-Population Evolutionary Algorithm with Single-Objective Guide for Many-objective Optimization[J]. Information Sciences (S0020-0255), 2019, 503: 39-60. |
23 | Xue J K, Shen B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm[J]. Systems Science & Control Engineering (S2164-2583), 2020, 8(1): 22-34. |
24 | Technology-Cybernetics. Solving Multi-objective Optimization Problems Using Hybrid Cooperative Invasive Weed Optimization With Multiple Populations[J]. Journal of Technology & Science (S1944-1894), 2018: 821-832. |
25 | 冯文涛, 邓兵. 鲸鱼优化算法的全局收敛性分析及参数选择研究[J]. 控制理论与应用, 2021, 38(5): 641-651. |
Feng Wentao, Deng Bing. Global Convergence Analysis and Parameter Selection of Whale Optimization Algorithm[J]. Control Theory and Applications, 2021, 38(5): 641-651. | |
26 | Dalia Y, Mohamed A E, Mirjalili S. Fractional-order Calculus-based Flower Pollination Algorithm with Local Search for Global Optimization and Image Segmentation[J]. Knowledge-based Systems (S0950-7051), 2020, 197(4): 105889. |
27 | Soheyl K, Seyed H R. Sine-cosine Crow Search Algorithm: Theory and Applications[J]. Neural Computing and Applications (S0941-0643), 2019, 3(6): 1-18. |
28 | Wilcoxon F. Individual Comparisons by Ranking Met-hods[J]. Biometrics Bulletin (S0099-4987), 1945, 1(6): 80-83. |
29 | Kennet M C, Chokumnoyporn N, Sriwattana S, et al. Comparing Friedman Versus Mack-Skillings Data Analyses on duplicated rank data: a Case of Visual Color Intensity[J]. Journal of the Science of Food and Agriculture (S0022-5142), 2019, 99(13): 5696-5701. |
30 | Qin H W, Fei Q H, Ma X Q, et al. A New Parameter Reduction Algorithm for Soft Sets Based on Chi-square Test[J]. Applied Intelligence (S0924-669X), 2021, 51(11) : 7960-7972. |
31 | Shih-Hsi L, Marjan M, Dejan H, et al. A Parameter Control Method of Evolutionary Algorithms using Exploration and Exploitation Measures with a Practical Application for fitting Sovova's Mass Transfer Model[J]. Applied Soft Computing Journal (S1568-4946), 2013, 13(9): 3792-3805. |
[1] | Xuewen Wu, Jingxian Liao. Game-Based Resource Allocation and Task Offloading Scheme in Collaborative Cloud-Edge Computing System [J]. Journal of System Simulation, 2022, 34(7): 1468-1481. |
[2] | Xiangyang Deng, Limin Zhang, Wei Fang, Miao Tang. Robot Path Planning Based on Bidirectional Aggregation Ant Colony Optimization [J]. Journal of System Simulation, 2022, 34(5): 1101-1108. |
[3] | Jianfeng Li, Di Lu, Hexiang Li. An Improved Atomic Search Algorithm [J]. Journal of System Simulation, 2022, 34(3): 490-502. |
[4] | Jun Dong, Chunming Ye. Research on Joint Optimization of Energy-Saving Distributed Manufacturing and Preventive Maintenance for Semiconductor Wafers [J]. Journal of System Simulation, 2022, 34(3): 584-602. |
[5] | Wang Fuyu, Tang Tao. Application of Two-population Fish Swarm Algorithm in Distributed Portfolio [J]. Journal of System Simulation, 2021, 33(9): 2074-2084. |
[6] | Liu Jingsen, Yuan Mengmeng, Li Yu. Solving Engineering Optimization Design Problems Based on Improved Salp Swarm Algorithm [J]. Journal of System Simulation, 2021, 33(4): 854-866. |
[7] | Gu Juping, Cheng Tianyu, Wang Jianping, Hua Liang, Zhao Fengshen, Jiang Ling. Fast 3D Medical Image Registration Based on Geometric Feature Invariants [J]. Journal of System Simulation, 2020, 32(11): 2105-2111. |
[8] | Lu Zhanwen, Cheng Xingong, Zhang Yongfeng. Global Optimization Method Based on Consensus Particle Swarm Optimization [J]. Journal of System Simulation, 2020, 32(10): 1936-1942. |
[9] | Liu Changliang, Wang Ziqi. Structure Learning of Fuzzy-tree Based on Rigorous Binary Tree Code and Genetic Algorithm [J]. Journal of System Simulation, 2020, 32(8): 1473-1480. |
[10] | Liu Jingsen, Liu Xiaozhen, Li Yu. Cuckoo Search Algorithm with Dynamic Step and Discovery Probability [J]. Journal of System Simulation, 2020, 32(2): 289-298. |
[11] | Gu Juping, Cheng Tianyu, Hua Liang, Wang Jianping, Zhao Jian, Cao Yong. Overview of Image Segmentation and Registration for Spine Biological Modeling [J]. Journal of System Simulation, 2019, 31(2): 167-173. |
[12] | Lu Qiuqin, Huang Guangqiu. Predator-prey Dynamics-based Optimization [J]. Journal of System Simulation, 2018, 30(10): 3975-3984. |
[13] | Li Rongyu, Liang Dong, Qi Guihong. Adaptive Feedback Elitist Teaching-Learning-Based Optimization Algorithm [J]. Journal of System Simulation, 2018, 30(8): 2950-2957. |
[14] | Li Qi, Zhao Feng. Improved BP Neural Network of Heat Load Forecasting Based on Temperature and Date Type [J]. Journal of System Simulation, 2018, 30(4): 1464-1472. |
[15] | Liu Changliang, Wang Pengfei, Liu Shuai, Luo Lei, Hui Zhenqiao. An Improved CS Algorithm and Its Application in Micro Grid Optimization [J]. Journal of System Simulation, 2018, 30(3): 930-936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||