1 |
国家能源局. 国家能源局2021年一季度网上新闻发会文字实录[EB/OL]. (2021-01-30)[2021-04-12]. .
|
|
National Energy Administration. Transcript of Online News Conference of the National Energy Administration in the First Quarter of 2021[EB/OL]. (2021-01-30) [2021-04-12]. .
|
2 |
舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9.
|
|
Shu Yinbiao, Zhang Zhigang, Guo Jianbo, et al. Study on Key Factors and Solution of Renewable Energy Accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9.
|
3 |
Basu M. Economic Environmental Dispatch of Solar-Wind-Hydro-Thermal Power System[J]. Renewable Energy Focus(S1755-0086), 2019, 30: 107-122.
|
4 |
Yin Y, Liu T, He C. Day-Ahead Stochastic Coordinated Scheduling for Thermal-Hydro-Wind-Photovoltaic Systems [J]. Energy(S 0360- 5422), 2019, 187: 115944.
|
5 |
Yu H, Chung C, Wong K P, et al. Probabilistic Load Flow Evaluation with Hybrid Latin Hypercube Sampling and Cholesky Decomposition[J]. IEEE Transactions on Power Systems(S0885-8950), 2009, 24(2): 661-667.
|
6 |
Wang W, Li C, Liao X, et al. Study on Unit Commitment Problem Considering Pumped Storage and Renewable Energy Via a Novel Binary Artificial Sheep Algorithm [J]. Applied Energy(S0306-2619), 2017, 187: 612-626.
|
7 |
冯新扬, 邵超. 跨卷积网络特征融合的SAR图像目标识别[J]. 系统仿真学报, 2021, 33(3): 554-561.
|
|
Feng Xinyang, Shao Chao. SAR Image Target Recognition Based on Across Convolution Network Feature Fusion[J]. Journal of System Simulation, 2021, 33(3): 554-561.
|
8 |
Zhou H, Zhang Y, Yang L, et al. Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism [J]. IEEE Access(S2169-3536), 2019, 7: 78063-78074.
|
9 |
赵唯嘉, 张宁, 康重庆, 等. 光伏发电出力的条件预测误差概率分布估计方法[J]. 电力系统自动化, 2015, 39(16): 8-15.
|
|
Zhao Weijia, Zhang Ning, Kang Chongqing, et al. A Method of Probabilistic Distribution Estimation of Condition Forecast Error for Photovoltaic Power Generation[J]. Automatic of Electric Power Systems, 2015, 39(16): 8-15.
|
10 |
陈瑶琪. 基于典型天气类型计及随机预测误差的光伏发电短期预测研究[J]. 中国电力, 2016, 49(5): 157-162.
|
|
Chen Yaoqi. Short-Term Photovoltaic Power Prediction Based on Typical Climate Types and Stochastic Prediction Error[J]. Electric Power, 2016, 49(5): 157-162.
|
11 |
Hlalele Thabo G, Naidoo Raj M, Bansal Ramesh C, et al. Multi-Objective Stochastic Economic Dispatch with Maximal Renewable Penetration under Renewable Obligation[J]. Applied Energy(S0306-2619), 2020, 270: 115120.
|
12 |
Kothari D P, Dhillon J S. Power System Optimization [M]. New Delhi: Prentice Hall in India, 2004.
|
13 |
中国气象局. 公共气象服务—天气图形符号: [S]. 北京: 中国标准出版社, 2017.
|
|
China Meteorological Administration. Public Meteorological Service-Weather Graphic Symbols: [S]. Beijing: Standards Press of China, 2017.
|
14 |
邱瑞东, 何山, 董宁, 等. 基于LSTM-LGB模型的光伏电站辐照强度预测[J]. 安徽大学学报(自然科学版), 2021, 45(3): 66-71.
|
|
Qiu Ruidong, He Shan, Dong Ning, et al. Irradiation Intensity Prediction of Photovoltaic Power Station Based on LSTM-LGB Model[J]. Journal of Anhui University (Natural Science Edition), 2021, 45(3): 66-71.
|
15 |
宋绍剑, 李博涵. 基于LSTM网络的光伏发电功率短期预测方法的研究[J]. 可再生能源, 2021, 39(5): 594-602.
|
|
Song Shaojian, Li Bohan. Short-Term Forecasting Method of Photovoltaic Power Based on LSTM[J]. Renewable Energy Resources, 2021, 39(5): 594-602.
|
16 |
李文静, 王潇潇. 基于简化型LSTM神经网络的时间序列预测方法[J]. 北京工业大学学报, 2021, 47(5): 480-488.
|
|
Li Wenjing, Wang Xiaoxiao. Time Series Prediction Method Based on Simplified LSTM Neural Network[J]. Journal of Beijing University of Technology, 2021, 47(5): 480-488.
|
17 |
李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.
|
|
Li Bingchen, Yu Huijun, Liu Jingyu. Prediction of Short-Term Photovoltaic Power Generation Based on Kmeans and CEEMD-PE-LSTM[J]. Water Resources and Power, 2021, 39(4): 204-208.
|
18 |
Zhen S, Panida J. Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis with Renewable Energy Sources[J]. IEEE Transactions on Power Systems(S0885-8950), 2011, 26(4): 2066-2073.
|
19 |
王文潇. 水-火-新能源电力系统优化调度研究[D]. 武汉: 华中科技大学, 2018.
|
|
Wang Wenxiao. Resource on Optimal Scheduling of Hydro-Thermal-Renewable Power System[D]. Wuhan: Huazhong University of Science and Technology, 2018.
|