[1] 赵孟文, 高俊峰, 戈源. 电液伺服加载系统的鲁棒自适应PID控制方法[J]. 电子设计工程, 2017, 25(13): 178-181. Zhao Mengwen, Gao Junfeng, Ge Yuan.Research on Robust Adaptive PID Control of Electro-hydraulic Servo Load System[J]. Electronic Design Engineering, 2017, 25(13): 178-181. [2] 刘晓琳, 王春婷. 飞机舵机电液加载系统多余力抑制方法研究[J]. 系统仿真学报, 2017, 29(2): 409-417. Liu Xiaolin, Wang Chunting.Research of Strategy to Restrain Surplus Force of Aircraft Rudder Electro-Hydraulic Loading System[J]. Journal of System Simulation, 2017, 29(2): 409-417. [3] 李运华, 盛志清. 电液加载系统的多余力抑制方法[J]. 液压与气动, 2015(8): 1-9. Li Yunhua, Sheng Zhiqing.Methods for Suppressing Extraneous Force in Loading Systems[J]. Chinese Hydraulics & Pneumatics, 2015(8): 1-9. [4] Qiu Y, He Y, Cheng P.Pressure Control of Fuel Pressure Regulator based on BP Neural Network PID[C]// Advanced Mechatronic Systems (ICAMechS), 2017 International Conference on IEEE. Xiamen, China: IEEE (S2325-0690), 2017: 419-422. [5] Fan X, Meng F, Fu C, et al.Research of Brushless dc Motor Simulation System Based on RBF-PID algorithm[C]// 2009 Second International Symposium on Knowledge Acquisition and Modeling. Wuhan, China: IEEE, 2009, 2: 277-280. [6] Jacob R, Murugan S.Implementation of Neural Network based PID Controller[C]// 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). Chennai, India: IEEE, 2016: 2769-2771. [7] 张元, 周长省. 模糊神经网络PID在电动舵机控制中的应用[J]. 计算机仿真, 2012, 29(5): 77-80. Zhang Yuan, Zhou Changsheng.Application of Improved Fuzzy Neural Network PID Controller in Brushless DC Motor Control[J]. Computer Simulation. 2012, 29(5): 77-80. [8] 吴晓明, 马立廷, 郑协, 等. 改进的RBF神经网络PID算法在电液伺服系统中应用[J]. 机床与液压, 2015, 43(11): 63-66. Wu Xiaoming, Ma Liting, Zheng Xie, et al.Improved RBF Neural Network PID Control Strategy Used in Electro-Hydraulic Servo System[J]. Machine Tool and Hydraulics, 2015, 43(11): 63-66. [9] 张顶学, 关治洪, 刘新芝. 基于PSO的RBF神经网络学习算法及其应用[J]. 计算机工程与应用, 2006(20): 13-15. Zhang Dingxue, Guan Zhihong, Liu Xinzhi.RBF Neural Network Algorithm Based on PSO Algorithm and Its Application[J]. Computer Engineering and Applications. 2006(20): 13-15. [10] 沈美杰, 赵龙章, 周兵, 等. 基于PSO优化的RBF网络液压泵故障诊断研究[J]. 液压与气动, 2016(5): 87-92. Shen Meijie, Zhao Longzhang, Zhou Bing, et al.Hydraulic Pump Fault Diagnosis of RBF Network Based on PSO Optimization[J]. Chinese Hydraulics & Pneumatics, 2016(5): 87-92. [11] 刘梓溪, 张航. 基于QPSO算法优化的RBF神经网络设计[J]. 中南大学学报(自然科学版), 2013, 44(增1): 27-30. Liu Zixi, Zhang Hang.Optimal Design of RBFNN Based on QPSO Algorithm[J]. Journal of Central South University (Science and Technology), 2013, 44(S1): 27-30. [12] Kung Y S, Than H, Chuang T Y.FPGA-realization of a Self-tuning PID Controller for X-Y Table with RBF Neural Network Identification[J]. Microsystem Technologies (S0946-7076), 2018, 24(1): 243-253. [13] Furukawa S, Kondo S, Takanishi A, et al.Radial Basis Function Neural Network based PID Control for Quad-rotor Flying Robot[C]// 2017 17th International Conference on Control, Automation and Systems. Jeju, Korea (South): IEEE, 2017: 580-584. [14] Perng J W, Chen G Y, Hsieh S C.Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems[J]. Energies (S1996-1073), 2014, 7(1): 191-209. [15] 涂娟娟. PSO优化神经网络算法的研究及其应用[D]. 镇江: 江苏大学, 2013. Tu Juanjuan.Research on Learning Algorithm of Neural Network Optimized with PSO and Its Application[D]. Zhenjiang: Jiangsu University, 2013. [16] Bonyadi M R, Michalewicz Z.Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review[J]. Evolutionary Computation (S1063-6560), 2017, 25(1): 1-54. [17] Gao Y, Du W, Yan G.Selectively-informed Particle Swarm Optimization[J]. Scientific Reports (S2045-2322), 2015, 5: 9295. |