Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (5): 1197-1209.doi: 10.16182/j.issn1004731x.joss.24-0031
• Papers • Previous Articles Next Articles
Gu Wenbin, Qing Jiexia, Fang Jie, Liu Siqi
Received:2024-01-09
															
							
																	Revised:2024-03-13
															
							
															
							
																	Online:2025-05-20
															
							
																	Published:2025-05-23
															
						CLC Number:
Gu Wenbin, Qing Jiexia, Fang Jie, Liu Siqi. Improved Hybrid Optimization Algorithm for Multi-objective IPPS Problem[J]. Journal of System Simulation, 2025, 37(5): 1197-1209.
Table 1
Symbol definition
| 符号 | 描述 | 
|---|---|
| N | 工件总数 | 
| M | 机器总数 | 
| I | 工件索引 | 
| J | 待加工工序索引 | 
| K | 机器索引 | 
| mk | 第k个机器 | 
| Oij | 工件i的第j个加工工序 | 
| Hi | 工件i总加工工序数 | 
| fi | 工件i的加工特征数 | 
| pix | 加工特征fi 的可选工艺方案数(x = 1, 2, …, fi ) | 
| qixy | 工艺方案pix 所需加工的工序数(y = 1, 2, …, pix ) | 
| SHi | 工件i的加工工艺路线确认后待加工的工序数 | 
| Mij | 工序Oij 的可加工机器合集 | 
| tijk | 工序Oij 在机器mk 上的加工时间 | 
| Pijk | 工序Oij 在机器mk 上的加工功率 | 
| Cij | 工序Oij 的完工时间 | 
| Pfk | 机器mk 的待机功率 | 
| Pa | 车间辅助功率 | 
| Xijk | 1,如果Oij 被安排在机器mk 上;否则,0 | 
| Yijpq | 1,如果Oij 是Opq 的上一道工序;0,如果Oij 是Opq 的下一道工序 | 
Table 3
Optimization results comparison of IHOA with other algorithms about makespan
| 问题 | 工件数 | SEA | GATS | HA | ICA | THA | SMGAVNS | HMS-GA | IHOA | 
|---|---|---|---|---|---|---|---|---|---|
| 1 | 6 | 428 | 427 | 483 | 427 | 427 | 427 | 427 | 427 | 
| 2 | 6 | 343 | 343 | 383 | 343 | 343 | 343 | 343 | 301 | 
| 3 | 6 | 347 | 345 | 386 | 345 | 344 | 344 | 344 | 344 | 
| 4 | 6 | 306 | 306 | 328 | 306 | 306 | 306 | 306 | 301 | 
| 5 | 6 | 319 | 319 | 348 | 319 | 319 | 316 | 318 | 304 | 
| 6 | 6 | 438 | 427 | 506 | 435 | 427 | 427 | 427 | 427 | 
| 7 | 6 | 372 | 372 | 386 | 372 | 372 | 372 | 372 | 372 | 
| 8 | 6 | 343 | 343 | 376 | 343 | 348 | 351 | 342 | 320 | 
| 9 | 6 | 428 | 427 | 507 | 427 | 427 | 427 | 427 | 427 | 
| 10 | 9 | 443 | 427 | 504 | 440 | 427 | 427 | 427 | 427 | 
| 11 | 9 | 369 | 369 | 413 | 367 | 365 | 350 | 349 | 344 | 
| 12 | 9 | 328 | 326 | 361 | 327 | 321 | 317 | 321 | 301 | 
| 13 | 9 | 452 | 428 | 505 | 457 | 434 | 427 | 428 | 428 | 
| 14 | 9 | 381 | 380 | 423 | 390 | 385 | 393 | 374 | 372 | 
| 15 | 9 | 434 | 427 | 496 | 432 | 427 | 427 | 427 | 427 | 
| 16 | 12 | 454 | 435 | 521 | 466 | 430 | 437 | 428 | 434 | 
| 17 | 12 | 431 | 423 | 474 | 443 | 418 | 414 | 367 | 362 | 
| 18 | 12 | 379 | 349 | 417 | 384 | 353 | 358 | 335 | 331 | 
| 19 | 12 | 490 | 474 | 550 | 490 | 470 | 462 | 434 | 428 | 
| 20 | 12 | 447 | 432 | 473 | 440 | 431 | 419 | 390 | 386 | 
| 21 | 12 | 477 | 427 | 525 | 466 | 430 | 427 | 427 | 427 | 
| 22 | 15 | 534 | 513 | 560 | 529 | 489 | 476 | 443 | 444 | 
| 23 | 15 | 498 | 470 | 533 | 495 | 453 | 440 | 415 | 415 | 
| 24 | 18 | 587 | 539 | 607 | 577 | 511 | 493 | 475 | 475 | 
Table 4
Job information in different scale problems
| 问题 | 规模(工件数 | 工件序号 | 
|---|---|---|
| 1 | 6×5 | job1~6 | 
| 2 | 6×5 | job2~7 | 
| 3 | 6×5 | job3~8 | 
| 4 | 6×5 | job9~14 | 
| 5 | 6×5 | job10~15 | 
| 6 | 6×5 | job11~16 | 
| 7 | 6×5 | job1,3,6,8,10,15 | 
| 8 | 6×5 | job2,4,5,7,11,14 | 
| 9 | 6×5 | job2,6,9,12,13,16 | 
| 10 | 10×5 | job1~5,9~13 | 
| 11 | 10×5 | job4~8,12~16 | 
| 12 | 10×5 | job1,3,5,7~10,12,14,16 | 
| 13 | 10×5 | job1~9,13 | 
| 14 | 10×5 | job7~16 | 
| 15 | 15×10 | job1~15 | 
| 16 | 15×10 | job1~14,16 | 
| 17 | 15×10 | job1~11,13~16 | 
| 18 | 16×10 | job1~16 | 
| 1 | 李磊, 韩洪伟, 蒋琪. 美决策中心战概念研究[J]. 战术导弹技术, 2021(1): 34-37, 120. | 
| Li Lei, Han Hongwei, Jiang Qi. Analysis of the Concept of U.S. Decision-centric Warfare[J]. Tactical Missile Technology, 2021(1): 34-37, 120. | |
| 2 | 李磊, 沈剑, 蒋琪. 美智库«马赛克战: 利用人工智能和自主系统实施决策中心战»解读[J]. 飞航导弹, 2020(11): 1-3. | 
| 3 | 邓连印, 侯宇葵, 申志强. 美军新型作战概念发展分析与启示[J]. 航天电子对抗, 2020, 36(5): 18-23. | 
| Deng Lianyin, Hou Yukui, Shen Zhiqiang. Analysis and Enlightenment on the Development of New Combat Concept in the US Army[J]. Aerospace Electronic Warfare, 2020, 36(5): 18-23. | |
| 4 | 左毅, 郑少秋, 袁翔, 等. 破解马赛克战之系统发展思考[J]. 指挥信息系统与技术, 2020, 11(6): 1-7. | 
| Zuo Yi, Zheng Shaoqiu, Yuan Xiang, et al. System Development Consideration for Cracking Mosaic Warfare[J]. Command Information System and Technology, 2020, 11(6): 1-7. | |
| 5 | 杜燕波. 决胜无形空间: 美军在行动[J]. 军事文摘, 2021(1): 33-37. | 
| 6 | 高松, 孙媛, 段哲, 等. 基于马赛克战的电子对抗装备体系构建研究[J]. 舰船电子工程, 2021, 41(9): 78-82. | 
| Gao Song, Sun Yuan, Duan Zhe, et al. Research on Electronic Countermeasure Equipment System Construction Based on Mosaic Warfare[J]. Ship Electronic Engineering, 2021, 41(9): 78-82. | |
| 7 | 程翔. 人工智能时代马赛克战致胜机理研究[J]. 舰船电子对抗, 2020, 43(2): 12-15, 25. | 
| Cheng Xiang. Research into the Winning Mechanism of Mosaic Warfare in AI Era[J]. Shipboard Electronic Countermeasure, 2020, 43(2): 12-15, 25. | |
| 8 | 郭建国, 周敏, 郭宗易, 等. 马赛克战下的协同作战技术[J]. 航空兵器, 2021, 28(1): 1-5. | 
| Guo Jianguo, Zhou Min, Guo Zongyi, et al. Cooperative Combat Technology Under Mosaic Warfare[J]. Aero Weaponry, 2021, 28(1): 1-5. | |
| 9 | 姜福涛, 黄学军. "马赛克战"浅析[J]. 航天电子对抗, 2020, 36(2): 60-64. | 
| Jiang Futao, Huang Xuejun. Analysis of Mosaic Warfare[J]. Aerospace Electronic Warfare, 2020, 36(2): 60-64. | |
| 10 | 顾灏冰, 田少华, 周丹发, 等. 基于OODA环的马赛克战理念及关键技术分析[J]. 空天防御, 2021, 4(3): 65-69. | 
| Gu Haobing, Tian Shaohua, Zhou Danfa, et al. Analysis of Mosaic Warfare Concept and Key Technologies Based on OODA Loop[J]. Air & Space Defense, 2021, 4(3): 65-69. | |
| 11 | 郭渊斐, 徐文龙, 赵玉亮. 美军"马赛克战"的发展及对我军智能化建设的启示[J]. 海军工程大学学报(综合版), 2020, 17(1): 24-28. | 
| Guo Yuanfei, Xu Wenlong, Zhao Yuliang. Expectation of Development of US Army "Mosaic Warfare" and Its Enlightenment[J]. Journal of Naval University of Engineering(Comprehensive Edition), 2020, 17(1): 24-28. | |
| 12 | 李强, 王飞跃. 马赛克战概念分析和未来陆战场网信体系及其智能对抗研究[J]. 指挥与控制学报, 2020, 6(2): 87-93. | 
| Li Qiang, Wang Feiyue. Conceptual Analysis of Mosaic Warfare and Systems of Network-information Systems for Intelligent Countermeasures and Future Land Battles[J]. Journal of Command and Control, 2020, 6(2): 87-93. | |
| 13 | 王星宇, 王娜, 黎开颜, 等. "马赛克战"作战概念分析及其对未来战争形态的影响[J]. 国防科技, 2022, 43(4): 87-92. | 
| Wang Xingyu, Wang Na, Li Kaiyan, et al. An Analysis of the Mosaic Warfare Operational Concept and Its Influence on Future Warfare Forms[J]. National Defense Technology, 2022, 43(4): 87-92. | |
| 14 | 孙盛智, 刘玉, 盛碧琦, 等. "马赛克"战运行机制及制胜机理研究[J]. 指挥控制与仿真, 2023, 45(2): 150-154. | 
| Sun Shengzhi, Liu Yu, Sheng Biqi, et al. Research on the Operation Mechanism and Winning Mechanism of Mosaic Warfare[J]. Command Control & Simulation, 2023, 45(2): 150-154. | |
| 15 | 陈明德, 和欣. 马赛克战对指挥与通信领域的启示分析[J]. 通信技术, 2022, 55(10): 1284-1293. | 
| Chen Mingde, He Xin. Enlightenment Analysis of Mosaic Warfare for the Field of Command and Communications[J]. Communications Technology, 2022, 55(10): 1284-1293. | |
| 16 | 王芳, 饶运清, 唐秋华, 等. 多目标决策下Pareto非支配解的快速构造方法[J]. 系统工程理论与实践, 2016, 36(02): 454-463. | 
| Wang Fang, Rao Yunqing, Tang Qiuhuaet al. Fast Construction Method of Pareto Non-dominated Solution Under Multi-objective Decision[J]. Systems Engineering Theory & Practice, 2016, 36(02): 454-463. | |
| 17 | Kim Y K, park K, Ko J. A Symbiotic Evolutionary Algorithm for the Integration of Process Planning and Job Shop Scheduling[J]. Computers&Operations Research, 2003, 30 (8): 1151-1171. | 
| 18 | 李新宇. 工艺规划与车间调度集成问题的求解方法研究[D]. 武汉: 华中科技大学, 2009: 58. | 
| Li Xinyu. Research on Solving Method of Integrated Process Planning and Scheduling[D]. Wuhan: Huazhong University of Science and Technology, 2009: 58. | |
| 19 | Li X, Shao X, Gao L, et al. An Effective Hybrid Algorithm for Integrated Process Planning and Scheduling[J]. International Journal of Production Economics, 2010, 126(2). | 
| 20 | 文笑雨, 罗国富, 李浩, 等. 两阶段混合算法求解集成工艺规划与调度问题[J]. 中国机械工程, 2018, 29(22): 2716-2724+2732. | 
| Wen Xiaoyu, Luo Guofu, Li Haoet al. Two-stage Hybrid Algorithm for Integrated Process Planning and Scheduling Problem[J]. China Mechanical Engineering, 2018, 29(22): 2716-2724+2732. | |
| 21 | Wen X Y, Lian X N, Qian Y J, et al. Dynamic Scheduling Method for Integrated Process Planning and Scheduling Problem with Machine Fault[J], Robotics and Computer-Integrated Manufacturing, 2022, 77: 102334. | 
| 22 | Zhang X., Liao Z., Ma L.et al. Hierarchical Multistrategy Genetic Algorithm for Integrated Process Planning and Scheduling[J]. Journal of Intelligent Manufacturing, 2022, 33(1): 223–246. | 
| 23 | 周辉仁, 唐万生, 魏颖辉. 柔性Flow-Shop调度的遗传算法优化[J]. 计算机工程与应用, 2009, 45(30): 224-226, 233. | 
| Zhou Huiren, Tang Wansheng, Wei Yinghui. Genetic Algorithm Optimization of Flexible Flow-Shop Scheduling[J]. Computer Engineering and Applications, 2009, 45(30): 224-226, 233. | |
| 24 | 顾文斌, 李育鑫, 钱煜晖, 等. 基于激素调节机制IPSO算法的相同并行机混合流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(10): 2858-2871. | 
| Gu Wenbin, Li Yuxin, Qian Yuhuiet al. Hybrid Flow Job Shop Scheduling Problem of Identical Parallel Machines Based on Hormone Regulation Mechanism IPSO Algorithm[J]. Computer Integrated Manufacturing System, 2021, 27(10): 2858-2871. | 
| [1] | Yang Jie, Zhang Qi, Zeng Junjie, Yin Quanjun. Survey of Evolutionary Behavior Tree Algorithm [J]. Journal of System Simulation, 2021, 33(10): 2315-2322. | 
| [2] | Zhang Xiang, Wang Yan, Ji Zhicheng. Research on Dynamic Flexible Job Shop Scheduling Problem Based on Dynamic Interaction Layer [J]. Journal of System Simulation, 2020, 32(11): 2129-2137. | 
| [3] | Li Junyi, Liu Yijun, Le Jianliang. Research on Network-on-Chip Synthesis Flow Based on Hybrid Optimization Mapping Algorithm [J]. Journal of System Simulation, 2017, 29(5): 1141-1146. | 
| [4] | Zhou Hongni, Feng Ying, Wang Zhenxiao, Fan Weibing. Multi-objective Optimization to the Suspension of an Off-road Vehicle Based on Kriging Approximate Modeling [J]. Journal of System Simulation, 2017, 29(1): 49-56. | 
| [5] | Jiang Yingying, Ji Zhicheng. Hybrid Quantum-Behaved Particle Swarm Optimization for Parameter Identification of DFIG [J]. Journal of System Simulation, 2016, 28(5): 1054-1062. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||