Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (10): 2687-2700.doi: 10.16182/j.issn1004731x.joss.24-0376
• Papers • Previous Articles
Ding Xinhuan, Wang Huaqing, Dang Xu
Received:
2024-04-12
Revised:
2024-05-25
Online:
2025-10-20
Published:
2025-10-21
Contact:
Wang Huaqing
CLC Number:
Ding Xinhuan, Wang Huaqing, Dang Xu. Multi-objective Optimization of Signal Timing at Intersections Considering Tailpipe Emissions[J]. Journal of System Simulation, 2025, 37(10): 2687-2700.
Table 1
Emission rates of CO, HC, and NOx with different VSP intervals
工况 | 比功率区间/(kW/t) | CO/(g/s) | HC/(g/s) | NOx/(g/s) |
---|---|---|---|---|
1 | (-∞, -2) | 0.011 0 | 0.000 9 | 0.001 0 |
2 | [-2, 0) | 0.008 7 | 0.000 9 | 0.001 0 |
3 | [0, 1) | 0.004 7 | 0.000 8 | 0.000 4 |
4 | [1, 4) | 0.012 2 | 0.001 0 | 0.001 6 |
5 | [4, 7) | 0.016 7 | 0.001 3 | 0.002 6 |
6 | [7, 10) | 0.023 3 | 0.001 7 | 0.003 8 |
7 | [10, 13) | 0.029 3 | 0.002 1 | 0.005 1 |
8 | [13, 16) | 0.036 9 | 0.002 3 | 0.006 4 |
9 | [16, 19) | 0.049 5 | 0.002 8 | 0.007 7 |
10 | [19, 23) | 0.063 8 | 0.003 0 | 0.009 9 |
11 | [23, 28) | 0.105 4 | 0.003 8 | 0.012 7 |
12 | [28, 33) | 0.247 8 | 0.004 6 | 0.014 4 |
13 | [33, 39) | 0.413 1 | 0.005 7 | 0.015 6 |
14 | [39, +∞) | 0.624 7 | 0.007 2 | 0.016 7 |
Table 3
9 scenarios for timing optimization
场景 | 权重设置 | 优化后配时方案/s | 目标函数 | |||||
---|---|---|---|---|---|---|---|---|
α | β | g1 | g2 | g3 | g4 | C | f(x) | |
Ⅰ | 0.90 | 0.10 | 17 | 17 | 21 | 22 | 97 | 0.630 |
Ⅱ | 0.80 | 0.20 | 17 | 18 | 21 | 20 | 95 | 0.654 |
Ⅲ | 0.70 | 0.30 | 16 | 16 | 20 | 20 | 92 | 0.793 |
Ⅳ | 0.60 | 0.40 | 18 | 17 | 22 | 20 | 97 | 0.680 |
Ⅴ | 0.50 | 0.50 | 18 | 18 | 21 | 22 | 99 | 0.733 |
Ⅵ | 0.40 | 0.60 | 18 | 18 | 21 | 20 | 97 | 0.751 |
Ⅶ | 0.30 | 0.70 | 18 | 18 | 22 | 20 | 98 | 0.777 |
Ⅷ | 0.20 | 0.80 | 17 | 18 | 21 | 22 | 98 | 0.795 |
Ⅸ | 0.10 | 0.90 | 18 | 17 | 21 | 20 | 97 | 0.703 |
Table 4
Changes in traffic benefit indicators under nine scenarios
场景 | 总延误时间/s | 车均延误/(s/pcu) | 总停车次数 | 平均停车次数 | 通行能力/(pcu/h) |
---|---|---|---|---|---|
现状 | 133 175.0 | 37.80 | 3 375.00 | 0.93 | 4 152.00 |
Ⅰ | 95 648.1 | 27.15 | 3 231.97 | 0.89 | 4 047.88 |
Ⅱ | 94 814.7 | 26.91 | 3 242.61 | 0.90 | 4 029.23 |
Ⅲ | 91 625.8 | 26.01 | 3 222.27 | 0.87 | 4 017.34 |
Ⅳ | 96 019.0 | 27.25 | 3 239.44 | 0.89 | 4 088.74 |
Ⅴ | 97 607.6 | 27.70 | 3 236.02 | 0.90 | 4 057.69 |
Ⅵ | 96 568.9 | 27.41 | 3 240.86 | 0.91 | 4 032.74 |
Ⅶ | 97 246.0 | 27.60 | 3 242.93 | 0.92 | 4 047.04 |
Ⅷ | 96 568.3 | 27.41 | 3 231.63 | 0.88 | 4 053.13 |
Ⅸ | 95 860.0 | 27.21 | 3 239.88 | 0.88 | 3 989.45 |
Table 5
Changes in tailpipe emissions of individual pollutants
场景 | 尾气排放量/g | 增长率/% | ||||||
---|---|---|---|---|---|---|---|---|
总排放 | CO | NOx | HC | 总排放 | CO | NOx | HC | |
现状 | 4 453.32 | 3 729.04 | 475.24 | 349.05 | ||||
Ⅰ | 3 780.21 | 3 165.40 | 392.15 | 222.81 | -15.11 | -14.72 | -17.52 | -36.17 |
Ⅱ | 3 758.83 | 3 147.50 | 390.24 | 221.33 | -15.59 | -15.19 | -17.94 | -36.60 |
Ⅲ | 3 682.79 | 3 083.83 | 383.60 | 215.36 | -17.30 | -16.85 | -19.28 | -38.31 |
Ⅳ | 3 787.60 | 3 171.59 | 393.80 | 222.21 | -14.95 | -14.56 | -17.14 | -36.34 |
Ⅴ | 3 826.46 | 3 204.16 | 390.26 | 232.14 | -14.08 | -13.71 | -17.89 | -33.50 |
Ⅵ | 3 800.70 | 3 182.56 | 389.53 | 228.64 | -14.65 | -14.27 | -18.04 | -34.50 |
Ⅶ | 3 816.53 | 3 195.79 | 395.09 | 225.71 | -14.30 | -13.93 | -16.88 | -35.34 |
Ⅷ | 3 789.54 | 3 173.22 | 394.80 | 221.52 | -14.91 | -14.52 | -16.93 | -36.54 |
Ⅸ | 3 733.50 | 3 126.29 | 388.61 | 218.61 | -16.16 | -15.74 | -18.23 | -37.38 |
[1] | 曹阳. 基于模拟退火的交叉口自适应信号控制优化研究[J]. 交通运输工程与信息学报, 2018, 16(1): 49-55, 60. |
Cao Yang. Optimization of Adaptive Signal Control Using Simulated Annealing Algorithm[J]. Journal of Transportation Engineering and Information, 2018, 16(1): 49-55, 60. | |
[2] | 陈秀锋, 王瑞聪, 陈咨羽, 等. 基于改进NSGA-Ⅱ的交叉口信号配时多目标优化[J]. 青岛理工大学学报, 2024, 45(1): 111-117, 125. |
Chen Xiufeng, Wang Ruicong, Chen Ziyu, et al. Multi-objective Optimization of Intersection Signal Timing Based on Improved NSGA-Ⅱ Algorithm[J]. Journal of Qingdao University of Technology, 2024, 45(1): 111-117, 125. | |
[3] | 郭玉彤. 考虑排放特性的环形交叉口信号配时多目标优化方法研究[D]. 青岛: 青岛理工大学, 2023. |
Guo Yutong. Study on Multi-objective Optimization Method for Signal Timing at Roundabouts Considering Emission Characteristics[D]. Qingdao: Qingdao University of Technology, 2023. | |
[4] | Ghosh T, Anusha S P, Babu A, et al. Performance Evaluation of a Dynamic Signal Control System for Mixed Traffic Conditions Using Sparse Data[J]. Transportation Research Record, 2023, 2677(10): 797-807. |
[5] | Zhang Shaohua, Liu Yugang, Wang Qing, et al. Signal Timing Optimization of Exit Lanes for Left-turn Intersections Considering Emission and Delay[C]//Sixth International Conference on Traffic Engineering and Transportation System (ICTETS 2022). Bellingham: SPIE, 2023: 125912S. |
[6] | Fu Xiancheng, Gao Hengqiang, Cai Hongjuan, et al. How to Improve Urban Intelligent Traffic? A Case Study Using Traffic Signal Timing Optimization Model Based on Swarm Intelligence Algorithm[J]. Sensors, 2021, 21(8): 2631. |
[7] | Jia Hongfei, Lin Yu, Luo Qingyu, et al. Multi-objective Optimization of Urban Road Intersection Signal Timing Based on Particle Swarm Optimization Algorithm[J]. Advances in Mechanical Engineering, 2019, 2019: 1687814019842498. |
[8] | 许明, 李金烨, 左东宇, 等. 基于流量预测的信号灯配时优化强化学习方法[J]. 系统仿真学报, 2025, 37(4): 1051-1062. |
Xu Ming, Li Jinye, Zuo Dongyu, et al. Signal Timing Optimization via Reinforcement Learning with Traffic Flow Prediction[J]. Journal of System Simulation, 2025, 37(4): 1051-1062. | |
[9] | 吴颢. 考虑PM2.5排放的城市交叉口信号控制优化研究[D]. 成都: 西南交通大学, 2018. |
Wu Hao. Research on the Signal Control Optimization of Urban Intersection Considering PM2.5 Emissions[D]. Chengdu: Southwest Jiaotong University, 2018. | |
[10] | 张小雨, 邵春福. 城乡结合部道路交叉口多目标信号配时优化模型[J]. 系统仿真学报, 2020, 32(4): 709-717. |
Zhang Xiaoyu, Shao Chunfu. Multi-objective Signal Timing Optimal Model for Rural-urban Fringe Area Intersection[J]. Journal of System Simulation, 2020, 32(4): 709-717. | |
[11] | 牟亮, 赵红, 崔翔宇, 等. 基于改进Lagrange乘子法的交通信号配时优化研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 80-87. |
Mu Liang, Zhao Hong, Cui Xiangyu, et al. Traffic Signal Timing Optimization Based on Improved Lagrange Multiplier Method[J]. Complex Systems and Complexity Science, 2021, 18(1): 80-87. | |
[12] | 王旭, 蒋佩玉, 张汝华. 基于多目标优化的公交运行速度优化控制方法[J]. 交通信息与安全, 2020, 38(3): 32-39, 66. |
Wang Xu, Jiang Peiyu, Zhang Ruhua. A Speed Control Method for Transit Operation Based on Multi-objective Optimization[J]. Journal of Transport Information and Safety, 2020, 38(3): 32-39, 66. | |
[13] | 邓明君, 胡辛瑕, 李响, 等. 基于车速引导和感应控制的干线协调优化方法[J]. 系统仿真学报, 2024, 36(6): 1309-1321. |
Deng Mingjun, Hu Xinxia, Li Xiang, et al. Arterial Coordination Optimization Method Based on Vehicle Speed Guidance and Inductive Control[J]. Journal of System Simulation, 2024, 36(6): 1309-1321. | |
[14] | 陈开群, 王静, 高亚聪. 微观交通仿真模型参数多目标优化标定研究[J]. 交通工程, 2023, 23(1): 31-37. |
Chen Kaiqun, Wang Jing, Gao Yacong. Research on Multi-objective Optimization Calibration of Microscopic Traffic Simulation Model Parameters[J]. Journal of Transportation Engineering, 2023, 23(1): 31-37. | |
[15] | Zhang Xinghui, Fan Xiumei, Yu Shunyuan, et al. Multi-objective Optimization Method for Signalized Intersections in Intelligent Traffic Network[J]. Sensors, 2023, 23(14): 6303. |
[16] | 姚荣涵, 刘美妮, 徐洪峰. 信号控制交叉口车均延误模型适用性分析[J]. 吉林大学学报(工学版), 2016, 46(2): 390-398. |
Yao Ronghan, Liu Meini, Xu Hongfeng. Applicability Analysis of Vehicle Delay Models for Isolated Signalized Intersection[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 390-398. | |
[17] | 臧金蕊, 焦朋朋, 宋国华, 等. 基于机动车比功率分布的生态驾驶评价与轨迹优化[J]. 清华大学学报(自然科学版), 2023, 63(11): 1760-1769. |
Zang Jinrui, Jiao Pengpeng, Song Guohua, et al. Eco-driving Evaluation and Trajectory Optimization Based on Vehicle Specific Power Distribution[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1760-1769. | |
[18] | 高云峰, 胡华. 基于比功率法的信号控制交叉口排队车辆尾气排放估计[J]. 中国公路学报, 2015, 28(4): 101-108. |
Gao Yunfeng, Hu Hua. Estimation of Queued Vehicle Emissions at Signalized Intersections Based on Vehicle Specific Power Approach[J]. China Journal of Highway and Transport, 2015, 28(4): 101-108. | |
[19] | Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency. Methodology for Developing Modal Emission Rates for EPA's Multi-scale Motor Vehicle and Equipment Emission System[EB/OL].[2024-03-10]. . |
[20] | 路艳雪, 赵超凡, 吴晓锋, 等. 基于改进的NSGA-Ⅱ多目标优化方法研究[J]. 计算机应用研究, 2018, 35(6): 1733-1737. |
Lu Yanxue, Zhao Chaofan, Wu Xiaofeng, et al. Multi-objective Optimization Method Research Based on Improved NSGA-Ⅱ[J]. Application Research of Computers, 2018, 35(6): 1733-1737. | |
[21] | 王青松, 谢兴生, 周光临. 一种改进的非支配排序遗传算法[J]. 信息技术与网络安全, 2019, 38(5): 28-32, 36. |
Wang Qingsong, Xie Xingsheng, Zhou Guanglin. An Improved Non-dominated Sorting Genetic Algorithm[J]. Information Techology and Network Security, 2019, 38(5): 28-32, 36. | |
[22] | Carles-Bou Jose L, Galán Severino F. Self-adaptive Polynomial Mutation in NSGA-II[J]. Soft Computing, 2023, 27(23): 17711-17727. |
[23] | Li Miqing, Yang Shengxiang, Liu Xiaohui. Shift-based Density Estimation for Pareto-based Algorithms in Many-objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365. |
[24] | 王腾. 信控交叉口设置逆向可变车道几何参数与信号控制优化研究[D]. 西安: 长安大学, 2022. |
Wang Teng. Study on Geometric Parameters and Signal Control Optimization of Contraflow Left-turn Lane at Signal-controlled Intersections[D]. Xi'an: Chang'an University, 2022. | |
[25] | 单肖年, 刘皓冰, 张小丽, 等. 基于MOVES模型本地化的轻型车排放因子估计方法[J]. 同济大学学报(自然科学版), 2021, 49(8): 1135-1143, 1201. |
Shan Xiaonian, Liu Haobing, Zhang Xiaoli, et al. Localization of Light-duty Vehicle Emission Factor Estimation Based on MOVES[J]. Journal of Tongji University(Natural Science), 2021, 49(8): 1135-1143, 1201. |
[1] | Jianxu Zhang, Shuai Hu, Hongyi Jin. Modeling of Traffic Flow Velocity Control Strategy for Human-machine Mixed Driving at Signalized Intersections [J]. Journal of System Simulation, 2022, 34(8): 1697-1709. |
[2] | Zhou Chenjing, Gao Yacong, Rong Jian. Research on Improvement of Parameters Calibration Method of Microscopic Traffic Simulation Model [J]. Journal of System Simulation, 2020, 32(11): 2112-2120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||