Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (10): 2613-2629.doi: 10.16182/j.issn1004731x.joss.24-0511
• Papers • Previous Articles
Liu Weihong1, Zhao Sixiang1,2, Zhang Dali1,2, Jiang Zhenhui3
Received:
2024-05-11
Revised:
2024-06-18
Online:
2025-10-20
Published:
2025-10-21
Contact:
Zhao Sixiang
CLC Number:
Liu Weihong, Zhao Sixiang, Zhang Dali, Jiang Zhenhui. Dynamic Order Scheduling for Pick-and-pass System Considering Workload Balance and Learning Effects[J]. Journal of System Simulation, 2025, 37(10): 2613-2629.
Table 1
System characteristics of dynamic scheduling rules considering learning effects
指示 | 符号 | 系统特征 | 采集时间 |
---|---|---|---|
订单 | 订单 | 初始化阶段 | |
订单 | 初始化阶段 | ||
订单 | 初始化阶段 | ||
分区 | 分区 | 实时 | |
当前时刻已到达分区 | 实时 | ||
当前时刻已到达分区 | 实时 | ||
对当前派发至系统中的所有订单,累计将在分区 | 实时 | ||
对当前派发至系统中的所有订单,累计将在分区 | 实时 | ||
分区 | 实时 |
Table 4
Optimization results of scheduling rule parameters
规则代号 | 参数优化结果 | 迭代次数 | 迭代用时/s |
---|---|---|---|
N | [0.61, 0.18, 0.04, 1.00, 0.58, 0.11] | 20 | 4 000 |
T | [0.92, 0.29, 0, 0.98, 0.72, 0] | 22 | 4 309 |
Np | [0.19, 0.15, 0.15, 0.40, 0.41, 0.33] | 22 | 4 309 |
Tp | [0.22, 0.50, 0.12, 0, 0.99, 0.20] | 25 | 4 925 |
Np_HF | [0.22, 0.41, 0.08, -0.11, -0.48, -0.08, 0.25, 0.12, 0.43, 0.50, 0.31, 0.35] | 29 | 5 909 |
Tp_HF | [0.03, 0.32, 0.15, -0.06, -0.50, -0.26, 0.40, 0.08, 0.42, 0.24, -0.27, 0.43] | 23 | 3 189 |
Table 5
Comparison rules for order scheduling
规则名称 | 规则代号 | 规则描述 |
---|---|---|
先到先发规则 | FCFS | 直接将拣选订单按照其到达的时间顺序派发,当流水线的主路出现堵塞时就停止对经过该段路径订单的派发 |
最短加工时间规则 | SPT | 在每个派单时刻,从所有不受到堵塞问题影响的、可派发的订单中选择总加工时长最短的订单进行派发 |
最长加工时间规则 | LPT | 在每个派单时刻,从所有不受到堵塞问题影响的、可派发的订单中选择总加工时长最长的订单进行派发 |
随机排序规则 | RAND | 将待派发订单进行随机排列,按照排列顺序依次派发,同样对出现拥堵问题的订单暂停该时刻的派发 |
NEH启发式规则 | NEH | 一种解决经典静态流水车间问题的常用规则,将待调度订单按总加工时间的非增顺序进行排序,再依次按顺序选择订单重新排列,将其插入到对总工作时间增加最少的位置 |
Table 6
Order scheduling results without considering learning effect
类别 | 调度规则代号 | 工作总用时(单位时间) | 与FCFS用时对比/% | 工作平衡性 | 与FCFS的平衡性对比/% |
---|---|---|---|---|---|
对比规则 | FCFS | 15 623 | 0.18 | ||
SPT | 16 074 | 2.9 | 0.17 | -7.2 | |
LPT | 15 840 | 1.4 | 0.16 | -13.8 | |
RAND | 15 146 | -3.1 | 0.18 | -3.0 | |
NEH | 15 035 | -3.8 | 0.18 | -0.6 | |
本文规则 | N | 14 307 | -8.4 | 0.13 | -29.3 |
T | 14 244 | -8.8 | 0.13 | -29.4 | |
Np | 14 146 | -9.5 | 0.13 | -30.4 | |
Tp | 14 136 | -9.5 | 0.11 | -39.0 |
Table 8
Comparison of optimization effects with direct sorting scheme of genetic algorithm
订单数量 | SKU数量 | 瓶颈分区加工时间 (单位时间) | 调度规则 | 工作总用时 (单位时间) | 与FCFS的用时对比/% | 工作平衡性 | 与FCFS的平衡性对比/% |
---|---|---|---|---|---|---|---|
500 | 240 | 1 059 | FCFS | 1 195 | 0.19 | ||
GA | 1 060 | -11.3 | 0.14 | -24.6 | |||
Np | 1 061 | -11.2 | 0.13 | -30.2 | |||
Tp | 1 061 | -11.2 | 0.11 | -39.9 | |||
1 000 | 240 | 2 110 | FCFS | 2 424 | 0.18 | ||
GA | 2 120 | -12.5 | 0.15 | -12.0 | |||
Np | 2 139 | -11.8 | 0.12 | -31.0 | |||
Tp | 2 175 | -10.3 | 0.11 | -35.1 | |||
2 000 | 240 | 4 177 | FCFS | 4 721 | 0.17 | ||
GA | 4 212 | -10.8 | 0.16 | -6.3 | |||
Np | 4 215 | -10.7 | 0.12 | -32.2 | |||
Tp | 4 244 | -10.1 | 0.11 | -36.0 |
Table 9
Optimization effect of scheduling rules on different order sets
订单集 序号 | 工作总用时 | 工作平衡性 | ||||||
---|---|---|---|---|---|---|---|---|
Np | Tp | Np_HF | Tp_HF | Np | Tp | Np_HF | Tp_HF | |
平均 | -11.3 | -10.8 | -18.8 | -18.6 | -35.8 | -40.6 | -37.1 | -38.0 |
训练集 | -9.5 | -9.5 | -17.6 | -18.0 | -30.4 | -39.0 | -37.2 | -38.7 |
订单集1 | -12.1 | -12.1 | -16.6 | -16.2 | -42.3 | -50.4 | -47.7 | -51.4 |
订单集2 | -13.6 | -11.1 | -21.0 | -20.7 | -39.0 | -42.1 | -41.8 | -44.6 |
订单集3 | -10.4 | -10.7 | -23.8 | -23.8 | -34.1 | -44.2 | -35.6 | -40.1 |
订单集4 | -11.2 | -11.2 | -13.7 | -12.4 | -30.2 | -39.9 | -28.4 | -26.3 |
订单集5 | -10.7 | -10.1 | -18.2 | -17.8 | -32.2 | -36.0 | -36.1 | -36.7 |
订单集6 | -12.5 | -12.5 | -21.0 | -20.9 | -37.4 | -37.2 | -35.5 | -36.6 |
订单集7 | -15.1 | -13.0 | -21.8 | -21.4 | -32.9 | -33.8 | -31.5 | -32.1 |
订单集8 | -2.0 | -2.0 | -16.4 | -16.3 | -40.7 | -44.1 | -39.9 | -44.0 |
订单集9 | -10.2 | -10.3 | -14.5 | -14.8 | -36.4 | -39.5 | -38.1 | -33.0 |
订单集10 | -17.1 | -16.5 | -22.3 | -22.2 | -38.0 | -40.8 | -36.6 | -34.5 |
[1] | 颜伟, 孙佳旭, 崔若梁. 仓库拣选路径问题研究综述[J]. 科学技术与工程, 2022, 22(32): 14081-14089. |
Yan Wei, Sun Jiaxu, Cui Ruoliang. Review on Warehouse Picking Path Problem[J]. Science Technology and Engineering, 2022, 22(32): 14081-14089. | |
[2] | Jiang Min, Leung K H, Zhongyuan Lü, et al. Picking-replenishment Synchronization for Robotic Forward-reserve Warehouses[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 144: 102138. |
[3] | Wu Wan, René B M de Koster, Yu Yugang. Forward-reserve Storage Strategies with Order Picking: When Do They Pay Off?[J]. IISE Transactions, 2020, 52(9): 961-976. |
[4] | 宋爽, 赵思翔, 张大力. 考虑并行分区的智能接力拣选系统储位分配问题研究[J]. 工业工程与管理, 2022, 27(5): 1-10. |
Song Shuang, Zhao Sixiang, Zhang Dali. A Storage Allocation Problem in an Intelligent Pick-and-pass System with Parallel Picking Zones[J]. Industrial Engineering and Management, 2022, 27(5): 1-10. | |
[5] | Garey M R, Johnson D S, Sethi R. The Complexity of Flowshop and Jobshop Scheduling[J]. Mathematics of Operations Research, 1976, 1(2): 117-129. |
[6] | Jiang Xiaowei, Zhou Yaxian, Zhang Yuankai, et al. Order Batching and Sequencing Problem Under the Pick-and-sort Strategy in Online Supermarkets[J]. Procedia Computer Science, 2018, 126: 1985-1993. |
[7] | 纪佳溥. 自动化物流分拣系统智能调度的研究[D]. 北京: 机械科学研究总院, 2023. |
Ji Jiapu. Research on Intelligent Scheduling of Automatic Logistics Picking System[D]. Beijing: Mechanical Science Research Institute, 2023. | |
[8] | 黄敏芳, 张源凯, 王颜新, 等. 基于JIT装配模式的网上超市订单分拣优化模型[J]. 中国管理科学, 2020, 28(5): 159-166. |
Huang Minfang, Zhang Yuankai, Wang Yanxin, et al. JIT Assembly Line-based Order Picking Process Optimization Method for Online Supermarkets[J]. Chinese Journal of Management Science, 2020, 28(5): 159-166. | |
[9] | Nawaz Muhammad, Enscore E E Jr, Ham I. A Heuristic Algorithm for the M-machine, N-job Flow-shop Sequencing Problem[J]. Omega, 1983, 11(1): 91-95. |
[10] | 安宇欣, 王转. 配送中心多区并行拣货系统投产顺序优化研究[J]. 计算机工程与应用, 2023, 59(7): 328-336. |
An Yuxin, Wang Zhuan. Research on Optimization of Production Sequence of Multi-district Parallel Picking System in Distribution Center[J]. Computer Engineering and Applications, 2023, 59(7): 328-336. | |
[11] | 刘磊. 生产数据驱动的动态作业车间调度规则决策研究[D]. 重庆: 重庆邮电大学, 2019. |
Liu Lei. The Research of Scheduling Rules Decision-making Based on Production Data of Dynamic Job Shop[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2019. | |
[12] | 范华丽, 熊禾根, 蒋国璋, 等. 动态车间作业调度问题中调度规则算法研究综述[J]. 计算机应用研究, 2016, 33(3): 648-653. |
Fan Huali, Xiong Hegen, Jiang Guozhang, et al. Survey of Dispatching Rules for Dynamic Job-shop Scheduling Problem[J]. Application Research of Computers, 2016, 33(3): 648-653. | |
[13] | Nguyen S, Mei Yi, Xue Bing, et al. A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules[J]. Evolutionary Computation, 2019, 27(3): 467-496. |
[14] | Vlašić Ivan, Ðurasević Marko, Jakobović Domagoj. Improving Genetic Algorithm Performance by Population Initialisation with Dispatching Rules[J]. Computers & Industrial Engineering, 2019, 137: 106030. |
[15] | Aytug H, Lawley M A, McKay K, et al. Executing Production Schedules in the Face of Uncertainties: A Review and Some Future Directions[J]. European Journal of Operational Research, 2005, 161(1): 86-110. |
[16] | Holthaus Oliver, Rajendran Chandrasekharan. Efficient Jobshop Dispatching Rules: Further Developments[J]. Production Planning & Control, 2000, 11(2): 171-178. |
[17] | 李豆豆. 生产调度的启发式规则研究综述[J]. 机械设计与制造工程, 2014, 43(2): 51-56. |
Li Doudou. An Overview on Heuristic Rules for the Production Scheduling Problem[J]. Machine Design and Manufacturing Engineering, 2014, 43(2): 51-56. | |
[18] | Rajendran Chandrasekharan, Holthaus Oliver. A Comparative Study of Dispatching Rules in Dynamic Flowshops and Jobshops[J]. European Journal of Operational Research, 1999, 116(1): 156-170. |
[19] | Branke Jürgen, Nguyen S, Pickardt C W, et al. Automated Design of Production Scheduling Heuristics: A Review[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 110-124. |
[20] | Priore Paolo, Gómez Alberto, Pino Raúl, et al. Dynamic Scheduling of Manufacturing Systems Using Machine Learning: An Updated Review[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2014, 28(1): 83-97. |
[21] | Branke Jürgen, Hildebrandt Torsten, Scholz-Reiter Bernd. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations[J]. Evolutionary Computation, 2015, 23(2): 249-277. |
[22] | źUrasević Marko, Jakobović Domagoj. Evolving Dispatching Rules for Optimising Many-objective Criteria in the Unrelated Machines Environment[J]. Genetic Programming and Evolvable Machines, 2018, 19(1/2): 9-51. |
[23] | Oukil Amar, El-Bouri Ahmed. Ranking Dispatching Rules in Multi-objective Dynamic Flow Shop Scheduling: A Multi-faceted Perspective[J]. International Journal of Production Research, 2021, 59(2): 388-411. |
[24] | Zhou Yong, Yang Jianjun. Automatic Design of Scheduling Policies for Dynamic Flexible Job Shop Scheduling by Multi-objective Genetic Programming Based Hyper-heuristic[J]. Procedia CIRP, 2019, 79: 439-444. |
[25] | 陈亚绒, 管舒晨, 黄成军, 等. 基于仿真的双目标并行机开放车间自适应动态调度[J]. 系统仿真学报, 2023, 35(1): 69-81. |
Chen Yarong, Guan Shuchen, Huang Chengjun, et al. Simulation-Based Adaptive Dynamic Scheduling for Bi-objective Parallel Multi-processor Open Shop[J]. Journal of System Simulation, 2023, 35(1): 69-81. | |
[26] | Liu Weibo, Jin Yan, Price M. New Scheduling Algorithms and Digital tool for Dynamic Permutation Flowshop with Newly Arrived Order[J]. International Journal of Production Research, 2017, 55(11): 3234-3248. |
[27] | Shahrabi Jamal, Mohammad Amin Adibi, Mahootchi Masoud. A Reinforcement Learning Approach to Parameter Estimation in Dynamic Job Shop Scheduling[J]. Computers & Industrial Engineering, 2017, 110: 75-82. |
[28] | Chen Jian, Wang Meilin, Kong Xiang, et al. Manufacturing Synchronization in a Hybrid Flowshop with Dynamic Order Arrivals[J]. Journal of Intelligent Manufacturing, 2019, 30(7): 2659-2668. |
[29] | Liu Weibo, Jin Yan, Price M. New Meta-heuristic for Dynamic Scheduling in Permutation Flowshop with New Order Arrival[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5): 1817-1830. |
[30] | Rahman H F, Janardhanan M N, Izabela Ewa Nielsen. Real-time Order Acceptance and Scheduling Problems in a Flow Shop Environment Using Hybrid GA-PSO Algorithm[J]. IEEE Access, 2019, 7: 112742-112755. |
[31] | Wang Jinzhi, Qu Shuhui, Wang Jie, et al. Real-time Decision Support with Reinforcement Learning for Dynamic Flowshop Scheduling[C]//Smart SysTech 2017; European Conference on Smart Objects, Systems and Technologies. Piscataway: IEEE, 2017: 1-9. |
[32] | Mohamed Habib Zahmani, Atmani Baghdad. Multiple Dispatching Rules Allocation in Real Time Using Data Mining, Genetic Algorithms, and Simulation[J]. Journal of Scheduling, 2021, 24(2): 175-196. |
[33] | Yang Shengluo, Xu Zhigang, Wang Junyi. Intelligent Decision-making of Scheduling for Dynamic Permutation Flowshop via Deep Reinforcement Learning[J]. Sensors, 2021, 21(3): 1019. |
[34] | Yang Shengluo, Wang Junyi, Xu Zhigang. Real-time Scheduling for Distributed Permutation Flowshops with Dynamic Job Arrivals Using Deep Reinforcement Learning[J]. Advanced Engineering Informatics, 2022, 54: 101776. |
[35] | Zeiträg Yannik, José Rui Figueira, Horta Nuno, et al. Surrogate-assisted Automatic Evolving of Dispatching Rules for Multi-objective Dynamic Job Shop Scheduling Using Genetic Programming[J]. Expert Systems with Applications, 2022, 209: 118194. |
[36] | Wright T P. Factors Affecting the Cost of Airplanes[J]. Journal of the Aeronautical Sciences, 1936, 3(4): 122-128. |
[37] | Biskup Dirk. Single-machine Scheduling with Learning Considerations[J]. European Journal of Operational Research, 1999, 115(1): 173-178. |
[38] | Marichelvam M K, Geetha M, Tosun Ömür. An Improved Particle Swarm Optimization Algorithm to Solve Hybrid Flowshop Scheduling Problems with the Effect of Human Factors-a Case Study[J]. Computers & Operations Research, 2020, 114: 104812. |
[39] | Lu Yuanyuan, Wang Jibo. Some Single-machine Scheduling with Sum-of-processing-time-based and Job-position-based Processing Times[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6695-6702. |
[40] | Wu C C, Wang Dujuan, Cheng S R, et al. A Two-stage Three-machine Assembly Scheduling Problem with a Position-based Learning Effect[J]. International Journal of Production Research, 2018, 56(9): 3064-3079. |
[41] | De Jong J R. The Effects of Increasing Skill on Cycle Time and Its Consequences for Time Standards[J]. Ergonomics, 1957, 1(1): 51-60. |
[1] | Zheng Youlian, Lei Deming. Unrelated Parallel Machine Scheduling with Additional Resource and Learning Effect [J]. Journal of System Simulation, 2023, 35(12): 2560-2569. |
[2] | Zhenping Li, Guang Yang, Qianqian Han. Vehicle Routing Problem with Refined Oil Secondary Distribution Considering Workload Balance [J]. Journal of System Simulation, 2022, 34(2): 221-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||