Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (9): 2004-2015.doi: 10.16182/j.issn1004731x.joss.24-0199

• Special Column • Previous Articles    

Indicator Transfer Learning Based on Cloud Model and Maximum Mean Discrepancy

Xu Lixia1, Zhong Jilong1, Wu Shaoshi1, Ding Yishan1, Zhai Xiaoyu1, Chen Shizhao1, Wang Yizhe2, Wen Xue2, Zeng Juanfang2, Hou Xinwen2   

  1. 1.National Innovation Institute of Defense Technology, Academy of Military Science, Beijing 100071, China
    2.Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-03-06 Revised:2024-06-12 Online:2024-09-15 Published:2024-09-30
  • Contact: Hou Xinwen

Abstract:

In response to the problem of rare data samples in application experiment scenarios, this paper proposes an indicator transfer learning method based on cloud models and Maximum Mean Discrepancy (MMD), which transfers the indicator calculation model from typical simulation experiment scenarios to application experiment scenarios to meet the needs across platform and domain simulation evaluation. Using the maximum mean difference method to align the indicator distribution in the typical simulation experiment scenario to the indicator distribution in the application experiment scenario, thereby achieves indicator transfer, and by using cloud models based on a small number of examples for modeling and sampling, improves the efficiency of indicator transfer learning modeling. The effectiveness of our method has been verified through several indicator model transfer learning experiments from typical simulation experiment scenario to several application experiment scenarios. The distributions of target domain by our method are closer than those by Generative Adversarial Network transfer learning to the distributions of source domain. The transfer learning peformance of perception, cognition, decision and action ability indicators improves averagely 36.62% by Wasserstein distance measure.

Key words: cloud model, maximum mean discrepancy(MMD), indicator transfer learning, simulation assessment across platform and domain, simulation assessment on small data, indicator aggregation

CLC Number: