Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (9): 2004-2015.doi: 10.16182/j.issn1004731x.joss.24-0199
• Special Column • Previous Articles
Xu Lixia1, Zhong Jilong1, Wu Shaoshi1, Ding Yishan1, Zhai Xiaoyu1, Chen Shizhao1, Wang Yizhe2, Wen Xue2, Zeng Juanfang2, Hou Xinwen2
Received:
2024-03-06
Revised:
2024-06-12
Online:
2024-09-15
Published:
2024-09-30
Contact:
Hou Xinwen
CLC Number:
Xu Lixia, Zhong Jilong, Wu Shaoshi, Ding Yishan, Zhai Xiaoyu, Chen Shizhao, Wang Yizhe, Wen Xue, Zeng Juanfang, Hou Xinwen. Indicator Transfer Learning Based on Cloud Model and Maximum Mean Discrepancy[J]. Journal of System Simulation, 2024, 36(9): 2004-2015.
Table 7
Aggregate weight of the third level indexes of source domain
一级 指标 | 二级 指标 | 三级指标 | 三级指标权重 |
---|---|---|---|
感知能力 | 协同性 | 协同发现目标能力 | 1.00 |
感知能力 | 学习性 | 发现目标进化能力 | 1.00 |
感知能力 | 自主性 | 发现目标能力 | 1.00 |
认知能力 | 协同性 | 敌方威胁评估能力 | 1.00 |
认知能力 | 学习性 | 全局态势判断进化能力 | 1.00 |
认知能力 | 自主性 | 全局态势判断能力 | 1.00 |
决策能力 | 协同性 | 协同火力分配 | 1.00 |
决策能力 | 学习性 | 决策模仿学习能力 | 1.00 |
决策能力 | 自主性 | 决策自主收益 | 1.00 |
行动能力 | 协同性 | 任务协同执行能力 | 0.61 |
行动能力 | 协同性 | 协同毁伤效果 | 0.39 |
行动能力 | 自主性 | 任务自主执行能力 | 1.00 |
Table 10
Aggregate weight of the third level indexes of experiment I
一级指标 | 二级 指标 | 三级指标 | 三级指 标权重 |
---|---|---|---|
感知能力 | 协同性 | 协同发现目标能力 | 1.00 |
感知能力 | 学习性 | 发现目标进化能力 | 1.00 |
感知能力 | 自主性 | 发现目标能力 | 1.00 |
认知能力 | 协同性 | 敌方威胁评估能力 | 1.00 |
认知能力 | 学习性 | 全局态势判断进化能力 | 1.00 |
认知能力 | 自主性 | 全局态势判断能力 | 1.00 |
决策能力 | 协同性 | 协同火力分配 | 1.00 |
决策能力 | 学习性 | 决策模仿学习能力 | 1.00 |
决策能力 | 自主性 | 决策自主收益 | 1.00 |
行动能力 | 协同性 | 任务协同执行能力 | 0.91 |
行动能力 | 协同性 | 协同毁伤效果 | 0.09 |
行动能力 | 自主性 | 任务自主执行能力 | 1.00 |
Table 13
Aggregate weight of the third level indexes of experiment II
一级指标 | 二级指标 | 三级指标 | 三级指 标权重 |
---|---|---|---|
感知能力 | 协同性 | 协同发现目标能力 | 1.00 |
感知能力 | 学习性 | 发现目标进化能力 | 1.00 |
感知能力 | 自主性 | 发现目标能力 | 1.00 |
认知能力 | 协同性 | 敌方威胁评估能力 | 1.00 |
认知能力 | 学习性 | 全局态势判断进化能力 | 1.00 |
认知能力 | 自主性 | 全局态势判断能力 | 1.00 |
决策能力 | 协同性 | 协同火力分配 | 1.00 |
决策能力 | 学习性 | 决策模仿学习能力 | 1.00 |
决策能力 | 自主性 | 决策自主收益 | 1.00 |
行动能力 | 协同性 | 任务协同执行能力 | 0.52 |
行动能力 | 协同性 | 协同毁伤效果 | 0.48 |
行动能力 | 自主性 | 任务自主执行能力 | 1.00 |
Table 16
Aggregate weight of the third level indexes of experiment III
一级指标 | 二级指标 | 三级指标 | 三级指 标权重 |
---|---|---|---|
感知能力 | 协同性 | 协同发现目标能力 | 1.00 |
感知能力 | 学习性 | 发现目标进化能力 | 1.00 |
感知能力 | 自主性 | 发现目标能力 | 1.00 |
认知能力 | 协同性 | 敌方威胁评估能力 | 1.00 |
认知能力 | 学习性 | 全局态势判断进化能力 | 1.00 |
认知能力 | 自主性 | 全局态势判断能力 | 1.00 |
决策能力 | 协同性 | 协同火力分配 | 1.00 |
决策能力 | 学习性 | 决策模仿学习能力 | 1.00 |
决策能力 | 自主性 | 决策自主收益 | 1.00 |
行动能力 | 协同性 | 任务协同执行能力 | 0.98 |
行动能力 | 协同性 | 协同毁伤效果 | 0.02 |
行动能力 | 自主性 | 任务自主执行能力 | 1.00 |
1 | Qi Ziyuan, Zhang Yangyang, Fang Liqing, et al. Research on Effectiveness Evaluation Method of Weapon System Based on Cloud Model[J]. Journal of Physics: Conference Series, 2021, 1965(1): 012005. |
2 | Papernot N, McDaniel P. Deep K-nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning[EB/OL]. (2018-03-13) [2024-03-05]. . |
3 | Huang Qian, Katsman I, Gu Zeqi, et al. Enhancing Adversarial Example Transferability with an Intermediate Level Attack[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 4732-4741. |
4 | Szabo Zoltan, Lorincz Andras. Real and Complex Independent Subspace Analysis by Generalized Variance [EB/OL]. (2006-10-13) [2024-03-05]. . |
5 | 付玉, 张垚, 赵萌, 等. 基于仿真数据迁移学习的固定翼无人机检测[J]. 系统仿真学报, 2023, 35(5): 998-1007. |
Fu Yu, Zhang Yao, Zhao Meng, et al. Fixed-wing UAV Detection Based on Simulated Data Transfer Learning[J]. Journal of System Simulation, 2023, 35(5): 998-1007. | |
6 | Qu Shi, Zheng Yi, Yan Hua, et al. Operational Effectiveness Evaluation of Antimissile Early Warning Based on Combination Weighted TOPSIS[J]. Journal of Physics: Conference Series, 2021, 1927(1): 012007. |
7 | Feng Hao, Wang Nian, Tang Jun. Deep Weibull Hashing with Maximum Mean Discrepancy Quantization for Image Retrieval[J]. Neurocomputing, 2021, 464: 95-106. |
8 | Pinto Giuseppe, Wang Zhe, Roy A, et al. Transfer Learning for Smart Buildings: A Critical Review of Algorithms, Applications, and Future Perspectives[J]. Advances in Applied Energy, 2022, 5: 100084. |
9 | Cody T, Beling P A. A Systems Theory of Transfer Learning[J]. IEEE Systems Journal, 2023, 17(1): 26-37. |
10 | Abuduweili A, Li Xingjian, Shi H, et al. Adaptive Consistency Regularization for Semi-supervised Transfer Learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 6919-6928. |
11 | Zhu Zhuangdi, Lin Kaixiang, Jain A K, et al. Transfer Learning in Deep Reinforcement Learning: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13344-13362. |
12 | Wu Ocean, Yun Sing Koh, Dobbie Gillian, et al. Transfer Learning with Adaptive Online TrAdaBoost for Data Streams[C]//Proceedings of the 13th Asian Conference on Machine Learning. Chia Laguna Resort: PMLR, 2021: 1017-1032. |
13 | Long Mingsheng, Cao Yue, Wang Jianmin, et al. Learning Transferable Features with Deep Adaptation Networks[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York: JMLR, 2015: 97-105. |
14 | Yosinski J, Clune J, Bengio Y, et al. How Transferable Are Features in Deep Neural Networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3320-3328. |
15 | Li Na, Hao Huizhen, Gu Qing, et al. A Transfer Learning Method for Automatic Identification of Sandstone Microscopic Images[J]. Computers & Geosciences, 2017, 103: 111-121. |
16 | Xu Yonghui, Pan Jialin, Xiong Hui, et al. A Unified Framework for Metric Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(6): 1158-1171. |
17 | Tzeng E, Hoffman J, Saenko K, et al. Adversarial Discriminative Domain Adaptation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 2962-2971. |
18 | Zhu Han, Long Mingsheng, Wang Jianmin, et al. Deep Hashing Network for Efficient Similarity Retrieval[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2415-2421. |
19 | Long Mingsheng, Zhu Han, Wang Jianmin, et al. Unsupervised Domain Adaptation with Residual Transfer Networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 136-144. |
20 | Davis J, Domingos P. Deep Transfer via Second-order Markov Logic[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York: Association for Computing Machinery, 2009: 217-224. |
[1] | Li Hui, Yun Hao, Yue Hongli. Cloud Model PID Control of PMSM Based on SVM Inverse System [J]. Journal of System Simulation, 2021, 33(8): 1846-1855. |
[2] | Guo Qingjun, Hao Qianwen, Wang Yijie, Wang Jing. Subway System Resilience Evaluation in Based on ANP-Extension Cloud Model [J]. Journal of System Simulation, 2021, 33(4): 943-950. |
[3] | Wang Jianmin, Wu Yunjie. Credibility Evaluation Method of Small Sample Data Based on Cluster Cloud Model [J]. Journal of System Simulation, 2019, 31(7): 1263-1271. |
[4] | Zhou Hao, Bi Shuoben, Gong Yucheng, Wang Jun, Ling Dequan. Three-Dimensional Cloud Simulation of Satellite Cloud Map Based on SPH Method [J]. Journal of System Simulation, 2019, 31(7): 1300-1312. |
[5] | Chen li, Zhang HaiXia. Evaluation of Green Smart Cities in China Based on Entropy Weight - Cloud Model [J]. Journal of System Simulation, 2019, 31(1): 136-144. |
[6] | Lei Ming, Xie Bin. Air Defense Fire Distribution Based on Cloud-genetic Algorithm [J]. Journal of System Simulation, 2018, 30(9): 3533-3537. |
[7] | Wang Jindong, Yu Zhiyong, Zhang Hengwei, Fang Chen. Service Recommended Trust Algorithm Based on Cloud Model Attributes Weighted Clustering [J]. Journal of System Simulation, 2018, 30(11): 4298-4312. |
[8] | Wang Fei, Liang Xiaogeng, Guo Chao, Li Peipei. Guidance Simulation Credibility Evaluation Based on Clustering with Grey Cloud and Entropy Weight [J]. Journal of System Simulation, 2015, 27(8): 1703-1707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||