[1] 程虹, 李炜, 杨屹. 船舶浮态调整系统研究[J]. 中国造船, 2001, 42(1): 75-79. Cheng Hong, Li Wei, Yang Yi. Research on ship floating state adjustment system[J]. Shipbuilding of China, 2001, 42(1): 75-79. [2] 李建军. 大型油船安全控制技术的研究[D]. 上海: 上海海事大学, 2005. Li Jianjun. Research on Safety Control Technology of Large Oil Tankers[D]. Shanghai: Shanghai Maritime University, 2005. [3] 张建波, 强兆新, 郝金凤, 等. 超大型油船分舱方案优化设计研究[J]. 中国造船, 2017, 58(1): 125-134. Zhang Jianbo, Qiang Zhaoxin, Hao Jinfeng, et al. Research on Optimization Design of Submarine Plan of Super Large Oil Tanker[J]. Shipbuilding of China, 2017, 58(1): 125-134. [4] 谢田华. 船舶抗沉计算与决策模型研究[J]. 中国航海, 2005, 65(4): 11-14. Xie Tianhua. Research on ship anti-sink calculation and decision model[J]. Navigation of China, 2005, 65(4): 11-14. [5] 刘文艳. 综合试验舰浮态辅助决策系统研发[D]. 镇江:江苏科技大学, 2012. Liu Wenyan. Development of Integrated Test Ship Floating State Assistant Decision System[D]. Zhenjiang: Jiangsu University of Science and Technology, 2012. [6] 刘博. 基于三维模型的舰船浮态调整决策支持系统研究[D]. 大连: 大连海事大学, 2016. Liu Bo. Research on Ship Floating State Adjustment Decision Support System Based on 3D Model[D]. Dalian: Dalian Maritime University, 2016. [7] 王爱岭. 船舶破损进水浮态调整智能控制研究[D]. 镇江: 江苏科技大学, 2010. Wang Ailing. Research on Intelligent Control of Ship's Damaged Influent Floating State Adjustment[D]. Zhenjiang: Jiangsu University of Science and Technology, 2010. [8] 马鑫延. 舰船浮态调整实时仿真计算技术研究[D]. 大连: 大连海事大学, 2016. Ma Xinting. Research on Real-time Simulation and Calculation Technology of Ship Floating State Adjustment[D]. Dalian: Dalian Maritime University, 2016. [9] Panda D, Ramteke M. Preventive crude oil scheduling under demand uncertainty using structure adapted genetic algorithm[J]. Applied Energy (S0306-2619), 2019: 235. [10] Fernandez-Viagas V, Framinan J M. A best-of-breed iterated greedy for the permutation flowshop scheduling problem with makespan objective[J]. Computers and Operations Research (S0305-0548), 2019: 112. [11] Chiou J P, Chang C F, Jhang J S. Research for a New Novel Evolutionary Algorithm[C]. 2014 International Symposium on Computer, Consumer and Control. Taichung: Piscataway, NJ. 2014: 1115-1118. [12] Yusoh Z I M, Tang M. Composite SaaS scaling in Cloud computing using a hybrid genetic algorithm[C]. 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing: Piscataway, NJ. 2014: 1609-1616. |