[1] 王惠文, 孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报, 2007, 33(4): 500-504.Wang Huiwen, Meng Jie. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 500-504. [2] 郑小霞, 钱锋. 基于PCA和最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2006, 18(3): 739-741. ZHENG Xiaoxia, QIAN Feng. Soft Sensor Modeling Based on PCA and Support Vector Machines[J]. Journal of System Simulation, 2006, 18(3): 739-741. [3] 王巍, 柴天佑, 赵立杰. 带有稳定学习的递归神经网络动态偏最小二乘建模[J]. 控制理论与应用, 2012, 29(3): 337-341. WANG Wei, CHAI Tian-you, ZHAO Li-jie. Dynamic partial least squares modeling with recurrent neural networks of stable learning[J]. Control Theory & Applications, 2012, 29(3): 337-341. [4] Shao Weiming, Tian Xueming.Adaptive Soft Sensor for Quality Prediction of Chemical Processes Based on Selective Ensemble of Local Partial Least Squares Models[J]. Chemical Engineering Research and Design (S0263-8762), 2015, 95(3): 113-132. [5] 王宏伟, 韩云涛, 彭继慎. 基于TSPSO支持向量机红外甲烷传感器动态补偿[J]. 传感技术学报, 2013, 26(9): 1193-1197. WANG Hongwei, HAN Yuntao, PENG Jishen. Dynamic Compensation of Infrared Methane Sensor Based on TSPSO-ε-SVM[J]. CHINESE JOURNAL OF SENSORS AND ACTUATORS, 2013, 26(9): 1193-1197. [6] 李春富, 郑松, 葛铭. 基于递推非线性部分最小二乘模型的间歇过程批到批优化[J]. 计算机与应用化学, 2011, 28(7): 939-942. Li Chunfu, Zheng Song, Ge Ming. Batch-to-batch optimization of batch processes based on recursive nonlinear partial least squares model[J]. Computers and Applied Chemistry, 2011, 28(7): 939-942. [7] Cleveland W S.Robust Locally Weighted Regression and Smoothing Scatterplots[J]. Journal of American Statistical Association (S0162-1459), 1979, 74(368): 829-836. [8] Kim S, Kano M, Nakagawa H, et al.Estimation of Active Pharmaceutical Ingredients Content Using Locally Weighted Partial Least Squares and Statistical Wavelength Selection[J]. International Journal of Pharmaceutics (S0378-5173), 2011, 421(2): 269-274. [9] 章军, 杨慧中. 基于SVM的苯酚浓度半监督软测量方法[J]. 计算机与应用化学, 2013, 30(20): 1453-1456. Zhang Jun, Yang Huizhong. Semi-supervised soft sensor of Phenol based on SVM[J]. Computers and Applied Chemistry, 2013, 30(20): 1453-1456. [10] Ge Zhiqiang, Song Zhihuan.Semisupervised Bayesian Method for Soft Sensor Modeling with Unlabeled Data Samples[J]. AIChE Journal (S1547-5905), 2011, 57(8): 2109-2119. [11] 吴继明. 基于Boosting思想的半监督学习算法研究[D].吉林: 吉林大学, 2014. Wu Jiming. The research of semi-supervised learning based on Boosting[D]. Jilin: Jilin University, 2014. [12] Kim S, Kano M, Hasebe S, et al.Long-term Industrial Applications of Inferential Control Based on Just-in-time Soft Sensors: Economical Impact and Challenges[J]. Industrial and Engineering Chemistry Research (S0888-5885), 2013, 52(35): 12346-12356. [13] 唐晓亮, 韩敏. 一种基于极端学习机的半监督学习方法[J]. 大连理工大学学报, 2010, 50(5): 771-776. Tang Xiaoliang, Han Min. A semi-supervised learning method based on extreme learning machine[J]. Journal of Dalian University of Technology, 2010, 50(5): 771-776. [14] Ge Zhiqiang, Huang Biao, Song Zhihuan.Mixture Semisupervised Principal Component Regression Model and Soft Sensor Application[J]. AIChE Journal (S1547-5905), 2014, 60(2): 533-545. [15] Ma Ming, Shima K, Huang Biao.A Bayesian Framework for Real-Time Identification of Locally Weighted Partial Least Squares[J]. AIChE Journal (S1547-5905), 2015, 61(2): 518-529. [16] 熊伟丽, 姚乐, 徐保国. 基于EM算法的青霉素发酵过程多阶段融合建模[J]. 化工学报, 2014, 65(12): 4935-4961. XIONG Weili, YAO Le, XU Baoguo. Multi-stage fusion modeling for penicillin fermentation process based on EM algorithm[J]. CIESC Journal, 2014, 65(12): 4935-4961. [17] Jin Xing, Huang Biao, Shook D S.Multiple Model LPV Approach to Nonlinear Process Identification with EM Algorithm[J]. Journal of Process Control (S0959-1524), 2011, 21(1): 182-193. [18] Jin Xing, Huang Biao.Robust Identification of Piecewise/Switching Autoregressive Exogenous Process[J]. AIChE Journal (S1547-5905), 2010, 56(7): 1829-1844. [19] Yu S P, Yu K, Tresp V, et al.Supervised probabilistic principal component analysis[C]// Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA:ACM, 2006:464-473. [20] 阮宏镁, 田学民, 王平. 基于联合互信息的动态软测量方法[J]. 化工学报, 2014, 65(11): 4497-4502. Ruan Hongmei, Tian Xuemin, Wang Ping. Dynamic soft sensor method based on joint mutual information[J]. CIESC Journal, 2014, 65(11): 4497-4502. |