Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (7): 1848-1864.doi: 10.16182/j.issn1004731x.joss.24-0787
• Invited Papers • Previous Articles
Xie Xu, Ma Yuqing
Received:
2024-07-18
Revised:
2025-02-17
Online:
2025-07-18
Published:
2025-07-30
CLC Number:
Xie Xu, Ma Yuqing. Dynamic Data Driven Simulation Based on Macro-microscopic Hierarchical Simulation Models[J]. Journal of System Simulation, 2025, 37(7): 1848-1864.
Table 2
Street information of Jianghan District, Wuhan
街道 | 总人口 | 中心经度/(°) | 中心纬度/(°) |
---|---|---|---|
民族街道 | 32 213 | 114.285 | 30.570 5 |
花楼街道 | 2 354 | 114.29 | 30.578 3 |
水塔街道 | 19 426 | 114.282 | 30.583 7 |
民权街道 | 36 387 | 114.287 | 30.575 3 |
满春街道 | 23 878 | 114.278 | 30.573 |
民意街道 | 35 693 | 114.274 | 30.579 8 |
新华街道 | 40 765 | 114.272 | 30.589 |
万松街道 | 83 040 | 114.246 | 30.596 |
唐家墩街道 | 107 612 | 114.268 | 30.614 8 |
北湖街道 | 37 768 | 114.265 | 30.602 3 |
前进街道 | 29 010 | 114.279 | 30.581 4 |
常青街道 | 86 882 | 114.249 | 30.613 4 |
汉兴街道 | 150 671 | 114.242 | 30.627 2 |
Table 5
Performance comparison of different simulation modes
仿真方法 | 样本数 | 预测准确度RMSE | 运行时间/s | |||
---|---|---|---|---|---|---|
S | E | I | R | |||
多样本仿真 | 100 | 18.92 | 8.57 | 5.96 | 22.32 | / |
传统DDDS | 100 | 8.56 | 3.82 | 2.73 | 9.99 | 798.44 |
300 | 8.18 | 3.71 | 2.62 | 9.44 | 2 031.23 | |
500 | 7.48 | 3.35 | 2.38 | 8.75 | 2 890.48 | |
基于层次化仿真模型的DDDS | 100 | 11.73 | 5.38 | 3.75 | 12.90 | 784.44 |
300 | 11.37 | 5.14 | 3.58 | 12.55 | 2 035.82 | |
500 | 11.04 | 4.67 | 3.18 | 11.49 | 2 783.57 |
Table 6
Impact of model errors on the performance
模型误差 | |||||
---|---|---|---|---|---|
5% | macro | 89.76 (88.67, 90.02) | 49.07 (48.68, 49.26) | 22.25 (22.09, 22.33) | 66.17 (64.53, 66.54) |
micro | 7.29 (6.84, 7.39) | 3.62 (3.52, 3.79) | 2.37 (2.31, 2.49) | 6.69 (6.61, 7.10) | |
10% | macro | 95.56 (94.90, 95.63) | 50.36 (50.27, 50.53) | 22.89 (22.85, 22.94) | 71.42 (70.83, 71.46) |
micro | 11.40 (11.16, 11.57) | 5.07 (4.93, 5.23) | 3.57 (3.45, 3.68) | 12.64 (12.20, 12.80) | |
15% | macro | 101.51 (100.05, 101.98) | 51.67 (51.42, 51.74) | 23.42 (23.33, 23.50) | 76.47 (75.56, 77.00) |
micro | 15.71 (14.43, 16.98) | 6.10 (5.85, 6.36) | 4.49 (4.28, 4.72) | 16.48 (16.26, 16.71) |
Table 7
Impact of measurement errors on the performance
数据误差 | |||||
---|---|---|---|---|---|
3 | macro | 94.96 (94.59, 95.21) | 49.68 (48.53, 50.43) | 22.40 (21.25, 22.88) | 71.00 (70.46, 71.28) |
micro | 10.35 (10.06, 10.62) | 4.72 (4.61, 4.77) | 3.33 (3.22, 3.40) | 11.38 (11.02, 11.62) | |
5 | macro | 95.56 (94.90, 95.63) | 50.36 (50.27, 50.53) | 22.89 (22.85, 22.94) | 71.42 (70.83, 71.46) |
micro | 11.40 (11.16, 11.57) | 5.07 (4.93, 5.23) | 3.57 (3.45, 3.68) | 12.64 (12.20, 12.80) | |
7 | macro | 96.87 (95.35, 97.11) | 50.82 (50.52, 51.02) | 23.09 (22.94, 23.14) | 72.42 (71.74, 72.97) |
micro | 11.57 (11.33, 11.92) | 5.28 (5.19, 5.35) | 3.65 (3.55, 3.73) | 12.71 (12.49, 13.11) |
Table 8
Impact of data feeding frequency on the performance
数据采集频率 | |||||
---|---|---|---|---|---|
3 | macro | 92.60 (91.79, 93.52) | 48.08 (47.80, 48.29) | 21.57 (21.40, 21.76) | 69.30 (68.49, 70.00) |
micro | 11.09 (10.66, 11.17) | 5.03 (4.86, 5.28) | 3.53 (3.28, 3.71) | 12.08 (11.74, 12.55) | |
4 | macro | 95.56 (94.90, 95.63) | 50.36 (50.27, 50.53) | 22.89 (22.85, 22.94) | 71.4183 (70.83, 71.46) |
micro | 11.40 (11.16, 11.57) | 5.07 (4.93, 5.23) | 3.57 (3.45, 3.68) | 12.64 (12.20, 12.80) | |
5 | macro | 99.97 (98.73, 100.72) | 51.18 (50.98, 51.30) | 23.29 (23.17, 23.34) | 74.48 (73.14, 74.76) |
micro | 11.56 (11.27, 11.84) | 5.20 (4.94, 5.71) | 3.57 (3.49, 3.65) | 12.70 (12.41, 13.25) |
Table 9
Impact of the number of microscopic simulations on the performance
微观仿真数量 | ||||
---|---|---|---|---|
100 | 11.60 (10.61, 11.98) | 5.23 (4.98, 5.42) | 3.69 (3.50, 3.87) | 12.92 (12.07, 13.40) |
300 | 11.40 (11.16, 11.57) | 5.07 (4.93, 5.23) | 3.57 (3.45, 3.68) | 12.64 (12.20, 12.80) |
500 | 11.06 (10.90, 11.27) | 4.88 (4.72, 4.97) | 3.44 (3.26, 3.51) | 12.03 (11.79, 12.32) |
[1] | Hu X, Long Y. Dynamic Data Driven Simulation[J]. SCS M & S Magazine, 2011, II(1): 16-22. |
[2] | Bouttier F, Courtier P. Data Assimilation Concepts and Methods[EB/OL]. [2024-05-18]. . |
[3] | Xue Haidong, Gu Feng, Hu Xiaolin. Data Assimilation Using Sequential Monte Carlo Methods in Wildfire Spread Simulation[J]. ACM Transactions on Modeling and Computer Simulation, 2012, 22(4): 23. |
[4] | Wang Minghao, Hu Xiaolin. Data Assimilation in Agent Based Simulation of Smart Environments Using Particle Filters[J]. Simulation Modelling Practice and Theory, 2015, 56: 36-54. |
[5] | Xie Xu, van Lint Hans, Verbraeck Alexander. A Generic Data Assimilation Framework for Vehicle Trajectory Reconstruction on Signalized Urban Arterials Using Particle Filters[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 364-391. |
[6] | Rai S, Hu Xiaolin. Building Occupancy Simulation and Data Assimilation Using a Graph-based Agent-oriented Model[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 502: 270-287. |
[7] | Hu Xiaolin. Dynamic Data-Driven Simulation: Real-time Data for Dynamic System Analysis and Prediction[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2023. |
[8] | Xie Xu. Data Assimilation in Discrete Event Simulations[D]. Delft: Delft University of Technology, 2018. |
[9] | 谢旭, 邱晓刚, 包亦正, 等. 动态数据驱动仿真综述[J]. 系统仿真学报, 2024, 36(8): 1832-1842. |
Xie Xu, Qiu Xiaogang, Bao Yizheng, et al. Dynamic Data Driven Simulation: An Overview[J]. Journal of System Simulation, 2024, 36(8): 1832-1842. | |
[10] | Lahoz William A, Schneider Philipp. Data Assimilation : Making Sense of Earth Observation[J]. Frontiers in Environmental Science, 2014, 2: 00016. |
[11] | Wu Wanshu, James Purser R, Parrish David F. Three-dimensional Variational Analysis with Spatially Inhomogeneous Covariances[J]. Monthly Weather Review, 2022, 130(12): 2905-2916. |
[12] | Lorenc A C, Rawlins F. Why Does 4D-var beat 3D-var?[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3247-3257. |
[13] | Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. |
[14] | Gillijns S, Mendoza O B, Chandrasekar J, et al. What Is the Ensemble Kalman Filter and How Well Does It Work?[C]//Proceedings of the 2006 American Control Conference. Piscataway: IEEE, 2006: 4448-4453. |
[15] | Evensen Geir. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation[J]. Ocean Dynamics, 2003, 53(4): 343-367. |
[16] | Djuric P M, Kotecha J H, Zhang J, et al. Particle Filtering[J]. IEEE Signal Processing Magazine, 2003, 20(5): 19-38. |
[17] | Peter Jan van Leeuwen. Particle Filtering in Geophysical Systems[J]. Monthly Weather Review, 2009, 137(12): 4089-4114. |
[18] | Aydt Heiko, Stephen John Turner, Cai Wentong, et al. Symbiotic Simulation Systems: An Extended Definition Motivated by Symbiosis in Biology[C]//2008 22nd Workshop on Principles of Advanced and Distributed Simulation. Piscataway: IEEE, 2008: 109-116. |
[19] | Darema F. Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements[C]//Computational Science - ICCS 2004. Berlin: Springer Berlin Heidelberg, 2004: 662-669. |
[20] | Darema F. Dynamic Data Driven Applications Systems: New Capabilities for Application Simulations and Measurements[C]//Computational Science – ICCS 2005. Berlin: Springer Berlin Heidelberg, 2005: 610-615. |
[21] | Kamrani Farzad, Ayani Rassul. Using On-line Simulation for Adaptive Path Planning of UAVs[C]//11th IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT'07). Piscataway: IEEE, 2007: 167-174. |
[22] | 段伟. 平行仿真的内涵、发展与应用[J]. 指挥与控制学报, 2019, 5(2): 82-86. |
Duan Wei. Parallel Simulation: Motivation, Concept and Application[J]. Journal of Command and Control, 2019, 5(2): 82-86. | |
[23] | 王会霞. 平行仿真技术研究[J]. 航天控制, 2016, 34(6): 64-67. |
Wang Huixia. Research on Parallel Simulation Technology[J]. Aerospace Control, 2016, 34(6): 64-67. | |
[24] | 窦林涛, 初阳, 周玉芳, 等. 平行仿真技术在指控系统中的应用构想[J]. 指挥控制与仿真, 2017, 39(1): 62-69. |
Dou Lintao, Chu Yang, Zhou Yufang, et al. Conception of the Application of Parallel Simulation Technology in Command and Control System[J]. Command Control & Simulation, 2017, 39(1): 62-69. | |
[25] | Grieves M, Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]//Franz-Josef Kahlen, Flumerfelt S, Anabela Alves. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches. Cham: Springer International Publishing, 2017: 85-113. |
[26] | 张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 1-10. |
[27] | 闫雪飞, 李新明, 刘东, 等. 基于多分辨率的multi-Agent武器装备体系作战仿真研究[J]. 系统仿真学报, 2017, 29(1): 136-143, 153. |
Yan Xuefei, Li Xinming, Liu Dong, et al. Battle Simulation Study on Multi-agent Weapon System-of-systems Based on Multi-resolution[J]. Journal of System Simulation, 2017, 29(1): 136-143, 153. | |
[28] | 刘宝宏, 黄柯棣. 多分辨率建模的研究现状与发展[J]. 系统仿真学报, 2004, 16(6): 1150-1154. |
Liu Baohong, Huang Kedi. Multi-resolution Modeling: Present Status and Trends[J]. Journal of System Simulation, 2004, 16(6): 1150-1154. | |
[29] | 刘兆鹏, 徐新海, 袁博文, 等. 一种多分辨率仿真模型构建方法[J]. 系统仿真学报, 2023, 35(1): 202-211. |
Liu Zhaopeng, Xu Xinhai, Yuan Bowen, et al. A Multi-resolution Simulation Modeling Method[J]. Journal of System Simulation, 2023, 35(1): 202-211. | |
[30] | 毛华超, 彭功状, 张和明, 等. 面向模型粒度控制的多分辨率建模方法[J]. 系统仿真学报, 2015, 27(11): 2630-2637. |
Mao Huachao, Peng Gongzhuang, Zhang Heming, et al. Model Granularity Control Oriented Multi-resolution Modeling[J]. Journal of System Simulation, 2015, 27(11): 2630-2637. | |
[31] | 张高峰, 吉玉洁. 多分辨率模型的协同仿真方法研究[J]. 系统仿真学报, 2018, 30(7): 2525-2532. |
Zhang Gaofeng, Ji Yujie. Method Research on Collaborative Simulation of Multi-resolution Models[J]. Journal of System Simulation, 2018, 30(7): 2525-2532. | |
[32] | Treiber Martin, Kesting Arne. Traffic Flow Dynamics: Data, Models and Simulation[M]. Berlin: Springer Berlin Heidelberg, 2013. |
[33] | 陈海亮. 基于地理信息的大规模疾病传播仿真与防控措施评估研究[D]. 长沙: 国防科技大学, 2021. |
Chen Hailiang. Research on Simulation of Large-scale Disease Spread and Evaluation of Mitigation Strategies Based on Geographic Information[D]. Changsha: National University of Defense Technology, 2021. | |
[34] | Ramesh Chandra Poonia, Abdul Khader Jilani Saudagar, Altameem Abdullah, et al. An Enhanced SEIR Model for Prediction of COVID-19 with Vaccination Effect[J]. Life, 2022, 12(5): 647. |
[35] | Yang Xian, Wang Shuo, Xing Yuting, et al. Bayesian Data Assimilation for Estimating Instantaneous Reproduction Numbers During Epidemics: Applications to COVID-19[J]. PLOS Computational Biology, 2022, 18(2): e1009807. |
[1] | Xie Xu, Qiu Xiaogang, Bao Yizheng, Xu Kai. Dynamic Data Driven Simulation: An Overview [J]. Journal of System Simulation, 2024, 36(8): 1832-1842. |
[2] | Sheng Huaxiong, Wu Lin, Xiao Changliang. Modeling Analysis and Prediction on NCP Epidemic Transmission [J]. Journal of System Simulation, 2020, 32(5): 759-766. |
[3] | Gan Mi, Tian Yunyi, Zhang Wenchang, Zhao Xihan. Modeling and Relevance Analysis of Urban Epidemic Transmission and Work Resumption Intensity [J]. Journal of System Simulation, 2020, 32(11): 2258-2271. |
[4] | Ge Chenglong, Zhu Yuanchang, Di Yanqiang, Hu Zhiwei, Dong Zhihua. Equipment RUL Prediction Oriented Parallel Simulation Framework [J]. Journal of System Simulation, 2018, 30(6): 2216-2224. |
[5] | Chen Bin, Wang Yiping, Qiu Xiaogang, Liu Liang, Ma Liang. Think of the Dynamic Data Driven Application Systems in Simulation: from Physics Domain to Social Domain [J]. Journal of System Simulation, 2018, 30(12): 4546-4554. |
[6] | Wang Rongxiao, Chen Bin, Qiu Sihang, Zhu Zhengqiu, Qiu Xiaogang. Data Driven Simulation of Polluted Gas Dispersion Using Source Estimation and Particle Filter [J]. Journal of System Simulation, 2017, 29(9): 2100-2108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||