Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (4): 882-894.doi: 10.16182/j.issn1004731x.joss.23-1532
• Papers • Previous Articles Next Articles
Lu Xinbiao, Ye Chunlin, Chen Yisen, Wu Wen, Chen Yudan
Received:
2023-12-14
Revised:
2024-02-20
Online:
2025-04-17
Published:
2025-04-16
Contact:
Ye Chunlin
CLC Number:
Lu Xinbiao, Ye Chunlin, Chen Yisen, Wu Wen, Chen Yudan. A Transfer Learning-based Hybrid Model for PM2.5Concentration Prediction[J]. Journal of System Simulation, 2025, 37(4): 882-894.
Table 4
Evaluation results of each model on PM2.5 of Shunyi Station
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
本文 | 5.731 | 3.925 | 0.074 | 0.993 |
LSTM | 13.057 | 8.706 | 0.137 | 0.963 |
CNN-LSTM | 12.180 | 7.720 | 0.131 | 0.968 |
GRU-Attention | 12.965 | 9.598 | 0.186 | 0.964 |
LSTM-GRU | 15.534 | 11.157 | 0.171 | 0.948 |
Stacked LSTM | 14.354 | 9.991 | 0.154 | 0.956 |
TCN | 12.211 | 7.794 | 0.126 | 0.968 |
TCN-LSTM | 16.732 | 10.179 | 0.148 | 0.940 |
Table 5
Evaluation results of each model on PM2.5 of Dingling Station
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
本文 | 6.690 | 4.134 | 0.088 | 0.992 |
LSTM | 22.182 | 11.626 | 0.267 | 0.910 |
CNN-LSTM | 16.707 | 7.980 | 0.146 | 0.949 |
GRU-Attention | 19.272 | 9.419 | 0.158 | 0.932 |
LSTM-GRU | 17.943 | 9.118 | 0.197 | 0.941 |
Stacked LSTM | 16.833 | 8.610 | 0.152 | 0.948 |
TCN | 18.013 | 8.776 | 0.207 | 0.941 |
TCN-LSTM | 17.968 | 8.609 | 0.164 | 0.941 |
Table 6
Evaluation results of each model on the PM2.5 of Nongzhuangguan Station
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
本文 | 7.242 | 4.919 | 0.077 | 0.993 |
LSTM | 12.024 | 8.983 | 0.135 | 0.980 |
CNN-LSTM | 10.939 | 8.025 | 0.112 | 0.981 |
GRU-Attention | 14.048 | 9.264 | 0.154 | 0.972 |
LSTM-GRU | 14.269 | 9.914 | 0.163 | 0.971 |
Stacked LSTM | 12.201 | 8.857 | 0.144 | 0.979 |
TCN | 8.997 | 6.546 | 0.097 | 0.989 |
TCN-LSTM | 14.969 | 8.070 | 0.122 | 0.968 |
1 | Kobza Joanna, Geremek Mariusz, Dul Lechosław. Characteristics of Air Quality and Sources Affecting High Levels of PM10 and PM2.5 in Poland, Upper Silesia Urban Area[J]. Environmental Monitoring and Assessment, 2018, 190(9): 515. |
2 | 胡冬梅, 吴建平, 田琨, 等. 北京重霾期空气污染物、气象和交通的时空特征[J]. 系统仿真学报, 2019, 31(3): 403-412. |
Hu Dongmei, Wu Jianping, Tian Kun, et al. Spatiotemporal Characteristics of Air Pollutants, Meteorology and Traffic During Heavy Haze Pollution in Beijing[J]. Journal of System Simulation, 2019, 31(3): 403-412. | |
3 | Yu Haofei, Stuart A L. Impacts of Compact Growth and Electric Vehicles on Future Air Quality and Urban Exposures May be Mixed[J]. Science of the Total Environment, 2017, 576: 148-158. |
4 | Winterbottom C J, Shah R J, Patterson K C, et al. Exposure to Ambient Particulate Matter is Associated with Accelerated Functional Decline in Idiopathic Pulmonary Fibrosis[J]. Chest, 2018, 153(5): 1221-1228. |
5 | Sanguineti Pamela B, Lanzaco Bethania L, María Laura López, et al. PM2.5 Monitoring During a 10-year Period: Relation Between Elemental Concentration and Meteorological Conditions[J]. Environmental Monitoring and Assessment, 2020, 192(5): 313. |
6 | Zhu Suling, Lian Xiuyuan, Liu Haixia, et al. Daily Air Quality Index Forecasting with Hybrid Models: A Case in China[J]. Environmental Pollution, 2017, 231, Part 2: 1232-1244. |
7 | Md Mazharul Islam, Sharmin Mowshumi, Ahmed Faroque. Predicting Air Quality of Dhaka and Sylhet Divisions in Bangladesh: A Time Series Modeling Approach[J]. Air Quality, Atmosphere & Health, 2020, 13(5): 607-615. |
8 | Man Tat Lei, Monjardino Joana, Mendes Luisa, et al. Macao Air Quality Forecast Using Statistical Methods[J]. Air Quality, Atmosphere & Health, 2019, 12(9): 1049-1057. |
9 | Jian Wei Koo, Shin Wee Wong, Selvachandran Ganeshsree, et al. Prediction of Air Pollution Index in Kuala Lumpur Using Fuzzy Time Series and Statistical Models[J]. Air Quality, Atmosphere & Health, 2020, 13(1): 77-88. |
10 | Luciana Maria Baptista Ventura, Fellipe de Oliveira Pinto, Laiza Molezon Soares, et al. Forecast of Daily PM2.5 Concentrations Applying Artificial Neural Networks and Holt-winters Models[J]. Air Quality, Atmosphere & Health, 2019, 12(3): 317-325. |
11 | Ida Kalate Ahani, Salari Majid, Shadman Alireza. An Ensemble Multi-step-ahead Forecasting System for Fine Particulate Matter in Urban Areas[J]. Journal of Cleaner Production, 2020, 263: 120983. |
12 | Zheng Tongshu, Bergin M H, Hu Shijia, et al. Estimating Ground-level PM2.5 Using Micro-satellite Images by a Convolutional Neural Network and Random Forest Approach[J]. Atmospheric Environment, 2020, 230: 117451. |
13 | Liu Hui, Chen Chao. Spatial Air Quality Index Prediction Model Based on Decomposition, Adaptive Boosting, and Three-stage Feature Selection: A Case Study in China[J]. Journal of Cleaner Production, 2020, 265: 121777. |
14 | Zaremba W, Sutskever I, Vinyals O. Recurrent Neural Network Regularization[EB/OL]. (2015-02-19) [2023-12-01]. . |
15 | Gers Felix A, Schmidhuber Jürgen, Cummins Fred. Learning to Forget: Continual Prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471. |
16 | Hochreiter Sepp, Schmidhuber Jürgen. Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
17 | Cho Kyunghyun, van Merrienboer Bart, Gulcehre Caglar, et al. Learning Phrase Representations Using RNN Encoder-decoder for Statistical Machine Translation[EB/OL]. (2014-09-03) [2023-12-01]. . |
18 | Abbasimehr Hossein, Paki Reza. Improving Time Series Forecasting Using LSTM and Attention Models[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1): 673-691. |
19 | Gundu Venkateswarlu, Simon Sishaj P. PSO-LSTM for Short Term Forecast of Heterogeneous Time Series Electricity Price Signals[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(2): 2375-2385. |
20 | Hu Juntao, Chen Yiyuan, Wang Wei, et al. An Optimized Hybrid Deep Learning Model for PM2.5 and O3 Concentration Prediction[J]. Air Quality, Atmosphere & Health, 2023, 16(4): 857-871. |
21 | Ganesh S S, Arulmozhivarman P, Tatavarti V S N R. Prediction of PM2.5 Using an Ensemble of Artificial Neural Networks and Regression Models[J/OL]. Journal of Ambient Intelligence and Humanized Computing. (2018-04-30) [2023-12-01]. . |
22 | Zhao Jiachen, Deng Fang, Cai Yeyun, et al. Long Short-term Memory-fully Connected (LSTM-FC) Neural Network for PM2.5 Concentration Prediction[J]. Chemosphere, 2019, 220: 486-492. |
23 | Liu D R, Hsu Y K, Chen H Y, et al. Air Pollution Prediction Based on Factory-aware Attentional LSTM Neural Network[J]. Computing, 2021, 103(1): 75-98. |
24 | Zhang Mingmin, Wu Dihua, Xue Rongna. Hourly Prediction of PM2.5 Concentration in Beijing Based on Bi-LSTM Neural Network[J]. Multimedia Tools and Applications, 2021, 80(16): 24455-24468. |
25 | Ding Chen, Wang Guizhi, Zhang Xinyue, et al. A Hybrid CNN-LSTM Model for Predicting PM2.5 in Beijing Based on Spatiotemporal Correlation[J]. Environmental and Ecological Statistics, 2021, 28(3): 503-522. |
26 | Liu Hui, Dong Shuqin. A Novel Hybrid Ensemble Model for Hourly PM2.5 Forecasting Using Multiple Neural Networks: A Case Study in China[J]. Air Quality, Atmosphere & Health, 2020, 13(12): 1411-1420. |
27 | Yang Guangfei, Zhang Qiang, Yuan Erbiao, et al. GAT-EGRU: A Deep Learning Prediction Model for PM2.5 Coupled with Empirical Modal Decomposition Algorithm[J]. Journal of Systems Science and Systems Engineering, 2023, 32(2): 246-263. |
28 | Yu Xiang, Wang Jian, Hong Qingqi, et al. Transfer Learning for Medical Images Analyses: A Survey[J]. Neurocomputing, 2022, 489: 230-254. |
29 | An Guangzhou, Akiba Masahiro, Omodaka Kazuko, et al. Hierarchical Deep Learning Models Using Transfer Learning for Disease Detection and Classification Based on Small Number of Medical Images[J]. Scientific Reports, 2021, 11(1): 4250. |
30 | Xie Junyao, Zhang Laibin, Duan Lixiang, et al. On Cross-domain Feature Fusion in Gearbox Fault Diagnosis Under Various Operating Conditions Based on Transfer Component Analysis[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Piscataway: IEEE, 2016: 1-6. |
31 | Kaur Taranjit, Tapan Kumar Gandhi. Deep Convolutional Neural Networks with Transfer Learning for Automated Brain Image Classification[J]. Machine Vision and Applications, 2020, 31(3): 20. |
32 | Rostami M, Kolouri S, Eaton E, et al. Deep Transfer Learning for Few-shot SAR Image Classification[J]. Remote Sensing, 2019, 11(11): 1374. |
33 | Mai Bui Huynh Thuy, Vinh Truong Hoang. Fusing of Deep Learning, Transfer Learning and GAN for Breast Cancer Histopathological Image Classification[C]//Advanced Computational Methods for Knowledge Engineering. Cham: Springer International Publishing, 2020: 255-266. |
34 | Du Yuntao, Wang Jindong, Feng Wenjie, et al. AdaRNN: Adaptive Learning and Forecasting of Time Series[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 402-411. |
35 | Hosny M, Zhu Minwei, Gao Wenpeng, et al. A Novel Deep LSTM Network for Artifacts Detection in Microelectrode Recordings[J]. Biocybernetics and Biomedical Engineering, 2020, 40(3): 1052-1063. |
36 | Bengio Y, Simard P, Frasconi P. Learning Long-term Dependencies with Gradient Descent Is Difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. |
37 | Wang Yusen, Liao Wenlong, Chang Yuqing. Gated Recurrent Unit Network-based Short-term Photovoltaic Forecasting[J]. Energies, 2018, 11(8): 2163. |
38 | Wang Baowei, Kong Weiwen, Guan Hui, et al. Air Quality Forecasting Based on Gated Recurrent Long Short Term Memory Model in Internet of Things[J]. IEEE Access, 2019, 7: 69524-69534. |
39 | 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53-58. |
Wang Zengping, Zhao Bing, Ji Weijia, et al. Short-term Load Forecasting Method Based on GRU-NN Model[J]. Automation of Electric Power Systems, 2019, 43(5): 53-58. |
[1] | Xu Lixia, Zhong Jilong, Wu Shaoshi, Ding Yishan, Zhai Xiaoyu, Chen Shizhao, Wang Yizhe, Wen Xue, Zeng Juanfang, Hou Xinwen. Indicator Transfer Learning Based on Cloud Model and Maximum Mean Discrepancy [J]. Journal of System Simulation, 2024, 36(9): 2004-2015. |
[2] | Wang Qiaochu, Ding Yan, Liang Chuanzhi, Zhang Haozheng, Huang Chen. Research on Scheduling Strategies Simulation for Building Air-conditioning Systems Based on Transfer Imitation Learning [J]. Journal of System Simulation, 2024, 36(12): 2884-2893. |
[3] | Zhang Wenfeng, Zhu Zhichao, Wu Dinghui. Rolling Bearing Fault Diagnosis Based on Weighted Domain Adaptive Convolutional Neural Network [J]. Journal of System Simulation, 2023, 35(11): 2445-2453. |
[4] | Wang Suqin, Zhang Feng, Gao Yudou, Shi Min. Learning Expression Recognition Based On Image Sequence [J]. Journal of System Simulation, 2020, 32(7): 1322-1330. |
[5] | Shi Xiangbin, Fang Xuejian, Zhang Deyuan, Guo Zhongqiang. Image Classification Based on Mixed Deep Learning Model Transfer Learning [J]. Journal of System Simulation, 2016, 28(1): 167-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||