Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (1): 79-94.doi: 10.16182/j.issn1004731x.joss.23-1103
• Papers • Previous Articles Next Articles
Yin Anlin, Zhang Zhuhong
Received:
2023-09-06
Revised:
2023-10-11
Online:
2025-01-20
Published:
2025-01-23
Contact:
Zhang Zhuhong
CLC Number:
Yin Anlin, Zhang Zhuhong. UAV Path Planning in Complex Environments and Its Improved Artificial Rabbits Optimization Algorithm[J]. Journal of System Simulation, 2025, 37(1): 79-94.
Table 1
Comparison of statistical results acquired by each algorithm
测试函数 | CDO | SOA | GOA | GJO | SSA | WOA | ARO | IARO | |
---|---|---|---|---|---|---|---|---|---|
1.28E-107 | 7.21E+01 | 5.00E-02 | 4.59E-07 | 3.44E+05 | 7.76E-82 | 2.15E-51 | 6.83E-172 | ||
1.19E-107 | 5.12E+00 | 2.23E-01 | 3.17E-07 | 1.28E+04 | 2.62E-81 | 4.26E-51 | 0 | ||
5.95E-37 | 5.71E-02 | 1.36E+281 | 9.44E-06 | 2.05E+03 | 3.53E-52 | 2.43E-27 | 1.17E-91 | ||
2.12E-36 | 1.88E-02 | 9.49E+281 | 3.11E-06 | 1.98E+01 | 6.99E-52 | 5.26E-27 | 3.56E-91 | ||
3.50E+07 | 3.16E+06 | 1.76E+06 | 1.25E+06 | 1.35E+07 | 4.21E+08 | 7.57E-33 | 7.53E-169 | ||
1.11E+08 | 1.75E+06 | 7.15E+05 | 4.24E+05 | 5.58E+06 | 1.05E+08 | 1.59E-32 | 0 | ||
7.66E-39 | 9.98E+01 | 3.78E+01 | 9.33E+01 | 3.97E+01 | 7.75E+01 | 6.93E-19 | 2.05E-86 | ||
1.52E-38 | 7.52E-02 | 3.49E+01 | 1.84E+00 | 2.25E+00 | 1.92E+01 | 9.86E-19 | 8.15E-86 | ||
1.99E+03 | 1.05E+05 | 1.14E+05 | 2.00E+03 | 1.34E+08 | 1.99E+03 | 3.70E+01 | 1.55E+01 | ||
2.17E-01 | 7.98E+04 | 3.32E+05 | 2.36E-01 | 8.13E+06 | 1.33E+00 | 4.02E+01 | 8.34E+00 | ||
0 | 2.73E+01 | 5.00E-02 | 5.00E-02 | 3.61E+05 | 0 | 0 | 0 | ||
0 | 1.53E+01 | 2.24E-01 | 2.24E-01 | 1.38E+04 | 0 | 0 | 0 | ||
7.56E-05 | 2.86E+00 | 2.21E+00 | 2.20E-02 | 4.01E+03 | 2.03E-03 | 9.08E-04 | 2.47E-04 | ||
6.60E-05 | 1.61E+00 | 9.82E+00 | 8.91E-03 | 3.25E+02 | 3.57E-03 | 6.80E-04 | 1.86E-04 | ||
-2.35E+04 | -4.81E+04 | -6.27E+04 | -7.44E+04 | -1.38E+05 | -7.15E+05 | -1.42E+05 | -1.49E+05 | ||
1.89E+03 | 7.06E+03 | 6.13E+03 | 3.01E+04 | 7.22E+03 | 1.15E+05 | 4.28E+03 | 4.13E+03 | ||
1.26E+00 | 2.61E+01 | 4.87E-01 | 1.18E-08 | 1.61E+04 | 3.64E-13 | 0 | 0 | ||
1.54E+00 | 2.67E+01 | 2.18E+00 | 1.30E-08 | 2.14E+02 | 1.12E-12 | 0 | 0 | ||
4.44E-15 | 2.00E+01 | 2.77E-01 | 1.26E-05 | 1.32E+01 | 3.91E-15 | 8.88E-16 | 8.88E-16 | ||
0 | 5.52E-06 | 1.24E+00 | 2.19E-06 | 1.39E-01 | 2.38E-15 | 0 | 0 | ||
0 | 3.42E-01 | 1.04E-02 | 2.14E-08 | 3.09E+03 | 2.22E-17 | 0 | 0 | ||
0 | 2.22E-01 | 4.22E-02 | 1.74E-08 | 1.03E+02 | 4.56E-17 | 0 | 0 | ||
1.19E+00 | 9.26E+04 | 1.39E+00 | 1.31E+00 | 4.96E+06 | 4.44E-02 | 1.03E-02 | 7.44E-03 | ||
4.56E-16 | 1.42E+05 | 1.65E+00 | 7.65E-01 | 1.18E+06 | 1.89E-02 | 3.26E-03 | 2.32E-03 | ||
1.99E+02 | 4.72E+04 | 2.00E+02 | 2.01E+02 | 1.23E+08 | 3.81E+01 | 9.31E+00 | 5.64E+00 | ||
1.69E+00 | 9.93E+04 | 2.49E+00 | 3.15E+00 | 1.39E+07 | 1.59E+01 | 4.87E+00 | 2.73E+00 | ||
w/t/l | 10/2/1 | 13/0/0 | 13/0/0 | 13/0/0 | 13/0/0 | 11/1/1 | 9/4/0 | / |
Table 3
Comparison of flight cost objective values acquired by each algorithm
场景 | 函数指标 | CDO | SOA | GOA | GJO | SSA | WOA | ARO | IARO |
---|---|---|---|---|---|---|---|---|---|
1 | 774.6 | 787.0 | 739.1 | 735.1 | 758.8 | 930.4 | 710.3 | 685.9 | |
31.4 | 55.5 | 29.0 | 44.7 | 74.2 | 60.6 | 31.4 | 20.1 | ||
8.2 | 7.7 | 16.7 | 8.1 | 7.9 | 7.8 | 8.0 | 7.3 | ||
2 | 961.4 | 892.9 | 839.9 | 833.1 | 872.3 | 1 131.0 | 819.4 | 778.2 | |
73.2 | 92.0 | 40.7 | 47.9 | 101.2 | 105.4 | 40.5 | 36.5 | ||
10.9 | 9.9 | 20.1 | 10.6 | 11.5 | 10.5 | 10.7 | 10.2 | ||
3 | 1 041.8 | 1 001.0 | 965.6 | 944.4 | 944.5 | 1 232.3 | 970.3 | 814.0 | |
31.7 | 54.6 | 87.9 | 92.5 | 98.3 | 83.2 | 51.6 | 55.6 | ||
15.3 | 13.8 | 31.1 | 15.1 | 14.9 | 15.5 | 13.6 | 13.4 |
Table 4
Comparison of four subobjective values acquired by IARO for SOOM with different track point numbers in scenarios 4~5
场景 | 航迹点数代价函数 | 20 | 40 | 60 | 80 | 110 | 140 | 170 | 200 |
---|---|---|---|---|---|---|---|---|---|
4 | 距离 | 1 428.9 | 1 258.1 | 1 293.6 | 1 198.4 | 1 225.2 | 1 253.7 | 1 230.8 | 1 215.3 |
转向角 | 0 | 46.8 | 155.4 | 558.6 | 1 546.3 | 1 460.9 | 1 561.4 | 1 039.5 | |
爬升角 | 69.7 | 163.8 | 551.5 | 511.0 | 1 390.7 | 1 242.9 | 1 263.2 | 1 009.4 | |
高度 | 80.9 | 497.0 | 864.2 | 1 262.8 | 2 667.1 | 3 994.7 | 4 875.2 | 7 603.8 | |
威胁 | 39.3 | 103.2 | 115.5 | 160.7 | 277.5 | 412.1 | 452.8 | 478.7 | |
目标值 | 482.0 | 648.5 | 938.7 | 1 165.7 | 2 107.3 | 2 880.0 | 3 393.5 | 4 926.5 | |
5 | 距离 | 2 627.5 | 2 833.5 | 2 661.0 | 2 684.3 | 2 518.1 | 2 580.5 | 2 614.6 | 2 575.3 |
转向角 | 12.3 | 13.4 | 54.8 | 123.6 | 419.3 | 699.9 | 2 118.3 | 909.6 | |
爬升角 | 42.3 | 48.6 | 212.5 | 522.4 | 323.7 | 1 049.8 | 1 629.5 | 1 146.2 | |
高度 | 108.7 | 366.1 | 528.9 | 777.1 | 965.7 | 2 758.3 | 2 939.4 | 3 990.0 | |
威胁 | 8.3 | 12.3 | 18.6 | 26.7 | 175.9 | 155.5 | 244.9 | 329.0 | |
目标值 | 855.1 | 1 066.9 | 1 122.2 | 1 296.4 | 1 370.6 | 2 488.3 | 2 728.8 | 3 229.8 |
1 | Hu Gang, Zhong Jingyu, Wei Guo. SaCHBA_PDN: Modified Honey Badger Algorithm with Multi-strategy for UAV Path Planning[J]. Expert Systems with Applications, 2023, 223: 119941. |
2 | Zhang Chaoqun, Zhou Wenjuan, Qin Weidong, et al. A Novel UAV Path Planning Approach: Heuristic Crossing Search and Rescue Optimization Algorithm[J]. Expert Systems with Applications, 2023, 215: 119243. |
3 | 李安醍, 武丁杰, 李诚龙. 低空无人机自主避障算法综述[J]. 电光与控制, 2021, 28(8): 59-64. |
Li Anti, Wu Dingjie, Li Chenglong. A Survey on Autonomous Collision Avoidance Algorithms for UAVs at Low Altitude[J]. Electronics Optics & Control, 2021, 28(8): 59-64. | |
4 | Wang Xing, Pan J S, Yang Qingyong, et al. Modified Mayfly Algorithm for UAV Path Planning[J]. Drones, 2022, 6(5): 134. |
5 | Arturo De Marinis, Iavernaro Felice, Mazzia Francesca. A Minimum-time Obstacle-avoidance Path Planning Algorithm for Unmanned Aerial Vehicles[J]. Numerical Algorithms, 2022, 89(4): 1639-1661. |
6 | 柯永斌, 谢田, 姜程文, 等. 基于改进袋獾优化算法的无人机路径规划[J]. 电子器件, 2023, 46(2): 397-403. |
Ke Yongbin, Xie Tian, Jiang Chengwen, et al. Path Planning of UAV Based on Improved Tasmanian Devil Optimization Algorithm[J]. Chinese Journal of Electron Devices, 2023, 46(2): 397-403. | |
7 | 陈明强, 李奇峰, 冯树娟, 等. 基于改进粒子群算法的无人机三维航迹规划[J]. 无线电工程, 2023, 53(2): 394-400. |
Chen Mingqiang, Li Qifeng, Feng Shujuan, et al. Three-dimensional Trajectory Planning of UAV Based on Improved Particle Swarm Optimization Algorithm[J]. Radio Engineering, 2023, 53(2): 394-400. | |
8 | Amylia Ait Saadi, Soukane Assia, Meraihi Yassine, et al. UAV Path Planning Using Optimization Approaches: A Survey[J]. Archives of Computational Methods in Engineering, 2022, 29(6): 4233-4284. |
9 | Srinivasan T, Bhandari S. Path-planning Around Obstacles for a Quadrotor UAV Using the RRT Algorithm for Indoor Environments[C]//AIAA Infotech @ Aerospace. Reston: AIAA, 2016: AIAA 2016-2196. |
10 | Scherer S, Singh S, Chamberlain L, et al. Flying Fast and Low Among Obstacles: Methodology and Experiments[J]. The International Journal of Robotics Research, 2008, 27(5): 549-574. |
11 | Schøler Flemming, Anders la Cour-Harbo, Bisgaard Morten. Generating Approximative Minimum Length Paths in 3D for UAVs[C]//2012 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2012: 229-233. |
12 | Chai Xuzhao, Zheng Zhishuai, Xiao Junming, et al. Multi-strategy Fusion Differential Evolution Algorithm for UAV Path Planning in Complex Environment[J]. Aerospace Science and Technology, 2022, 121: 107287. |
13 | Hu Gang, Du Bo, Wang Xiaofeng, et al. An Enhanced Black Widow Optimization Algorithm for Feature Selection[J]. Knowledge-Based Systems, 2022, 235: 107638. |
14 | Manh Duong Phung, Quang Phuc Ha. Safety-enhanced UAV Path Planning with Spherical Vector-based Particle Swarm Optimization[J]. Applied Soft Computing, 2021, 107: 107376. |
15 | 舒纬伟, 敬忠良, 董鹏. 基于乌贼算法的无人机航迹规划[J]. 科学技术与工程, 2017, 17(2): 120-125. |
Shu Weiwei, Jing Zhongliang, Dong Peng. UAV Trajectory Planning Based on Cuttlefish Algorithm[J]. Science Technology and Engineering, 2017, 17(2): 120-125. | |
16 | Zhang Daifeng, Duan Haibin. Social-class Pigeon-inspired Optimization and Time Stamp Segmentation for Multi-UAV Cooperative Path Planning[J]. Neurocomputing, 2018, 313: 229-246. |
17 | Huang Chen, Zhou Xiangbing, Ran Xiaojuan, et al. Adaptive Cylinder Vector Particle Swarm Optimization with Differential Evolution for UAV Path Planning[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105942. |
18 | Wang Liying, Cao Qingjiao, Zhang Zhenxing, et al. Artificial Rabbits Optimization: A New Bio-inspired Meta-heuristic Algorithm for Solving Engineering Optimization Problems[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105082. |
19 | 班多晗, 吕鑫, 王鑫元. 基于一维混沌映射的高效图像加密算法[J]. 计算机科学, 2020, 47(4): 278-284. |
Ban Duohan, Xin Lü, Wang Xinyuan. Efficient Image Encryption Algorithm Based on 1D Chaotic Map[J]. Computer Science, 2020, 47(4): 278-284. | |
20 | Haklı Hüseyin, Uğuz Harun. A Novel Particle Swarm Optimization Algorithm with Levy Flight[J]. Applied Soft Computing, 2014, 23: 333-345. |
21 | Shehadeh Hisham A. Chernobyl Disaster Optimizer (CDO): A Novel Meta-heuristic Method for Global Optimization[J]. Neural Computing and Applications, 2023, 35(15): 10733-10749. |
22 | Dhiman Gaurav, Kumar Vijay. Seagull Optimization Algorithm: Theory and Its Applications for Large-scale Industrial Engineering Problems[J]. Knowledge-Based Systems, 2019, 165: 169-196. |
23 | Agushaka Jeffrey O, Absalom E Ezugwu, Abualigah Laith. Gazelle Optimization Algorithm: A Novel Nature-inspired Metaheuristic Optimizer[J]. Neural Computing and Applications, 2023, 35(5): 4099-4131. |
24 | Chopra Nitish, Muhammad Mohsin Ansari. Golden Jackal Optimization: A Novel Nature-inspired Optimizer for Engineering Applications[J]. Expert Systems with Applications, 2022, 198: 116924. |
25 | Mirjalili Seyedali, Gandomi A H, Seyedeh Zahra Mirjalili, et al. Salp Swarm Algorithm: A Bio-inspired Optimizer for Engineering Design Problems[J]. Advances in Engineering Software, 2017, 114: 163-191. |
26 | Mirjalili Seyedali, Lewis Andrew. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
27 | Mirjalili Seyedali, Seyed Mohammad Mirjalili, Hatamlou Abdolreza. Multi-verse Optimizer: A Nature-inspired Algorithm for Global Optimization[J]. Neural Computing and Applications, 2016, 27(2): 495-513. |
[1] | Dang Sina, Xue Hongjun, Zhang Xiaoyan, Zhong Chengwen, Tao Caiyong. Simulation of Human Body Temperature Distribution Based on New Solution for Heat Conduction Differential Equation [J]. Journal of System Simulation, 2020, 32(5): 901-910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||