Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (8): 1929-1943.doi: 10.16182/j.issn1004731x.joss.23-0780
• Papers • Previous Articles
Wang Dongjie, Wen Sixin, Meng Wanzhi, Wu Di
Received:
2023-06-28
Revised:
2023-10-08
Online:
2024-08-15
Published:
2024-08-19
Contact:
Wen Sixin
CLC Number:
Wang Dongjie, Wen Sixin, Meng Wanzhi, Wu Di. GPU Parallel Acceleration Framework for Heuristic Optimization Algorithm[J]. Journal of System Simulation, 2024, 36(8): 1929-1943.
Table 2
Convergence error of heuristic optimization algorithm
函数 | 种群 | DE | HHO | GWO | WOA | 种群 | MFO | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPU | GPU | CPU | GPU | CPU | GPU | CPU | GPU | CPU | GPU | |||
800 | 0 | 0 | 0 | 0 | 6.29×10-5 | 7.43×10-5 | 0 | 0 | 100 | 6.26×10-8 | 5.07×10-8 | |
1 600 | 0 | 0 | 0 | 0 | 5.86×10-5 | 7.64×10-5 | 0 | 0 | 150 | 2.98×10-8 | 4.17×10-8 | |
2 400 | 0 | 0 | 0 | 0 | 4.76×10-5 | 9.02×10-5 | 0 | 0 | 200 | 1.19×10-8 | 2.98×10-8 | |
3 200 | 0 | 0 | 0 | 0 | 4.09×10-5 | 8.11×10-5 | 0 | 0 | 250 | 0 | 0 | |
800 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | |
1 600 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 0 | 0 | |
2 400 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 200 | 0 | 0 | |
3 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 250 | 0 | 0 | |
800 | 0.032 | 0.019 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0.25 | 0.29 | |
1 600 | 0.027 | 0.010 | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 0.22 | 0.28 | |
2 400 | 0.026 | 0.009 2 | 0 | 0 | 0 | 0 | 0 | 0 | 200 | 0.30 | 0.23 | |
3 200 | 0.018 | 0.005 4 | 0 | 0 | 0 | 0 | 0 | 0 | 250 | 0.26 | 0.24 | |
800 | 5.69×10-17 | 5.69×10-17 | 7.68×10-16 | 5.69×10-17 | 2.52×10-6 | 2.39×10-7 | 5.69×10-17 | 5.69×10-17 | 100 | 7.54×10-14 | 1.05×10-14 | |
1 600 | 5.69×10-17 | 5.69×10-17 | 3.42×10-16 | 5.69×10-17 | 6.60×10-6 | 1.64×10-6 | 5.69×10-17 | 5.69×10-17 | 150 | 6.39×10-14 | 2.75×10-14 | |
2 400 | 5.69×10-17 | 5.69×10-17 | 1.99×10-16 | 5.69×10-17 | 3.85×10-6 | 5.43×10-6 | 5.69×10-17 | 5.69×10-17 | 200 | 7.38×10-14 | 6.61×10-14 | |
3 200 | 5.69×10-17 | 5.69×10-17 | 5.69×10-17 | 5.69×10-17 | 7.04×10-6 | 9.01×10-7 | 5.69×10-17 | 5.69×10-17 | 250 | 9.79×10-15 | 8.98×10-15 | |
800 | 8.95×10-14 | 8.95×10-14 | 5.38×10-13 | 9.70×10-14 | 2.27×10-10 | 4.85×10-10 | 9.18×10-14 | 8.95×10-14 | 100 | 9.01×10-14 | 9.57×10-14 | |
1 600 | 8.95×10-14 | 8.95×10-14 | 1.52×10-13 | 9.01×10-14 | 1.24×10-10 | 4.17×10-10 | 9.29×10-14 | 9.01×10-14 | 150 | 8.95×10-14 | 8.95×10-14 | |
2 400 | 8.95×10-14 | 8.95×10-14 | 1.35×10-13 | 8.95×10-14 | 1.15×10-10 | 4.38×10-10 | 8.95×10-14 | 8.95×10-14 | 200 | 8.95×10-14 | 1.23×10-13 | |
3 200 | 8.95×10-14 | 8.95×10-14 | 1.08×10-13 | 8.95×10-14 | 1.30×10-10 | 5.21×10-10 | 9.01×10-14 | 8.95×10-14 | 250 | 8.95×10-14 | 8.95×10-14 | |
800 | 1.20×10-6 | 4.12×10-7 | 1.37×10-5 | 1.29×10-5 | 5.49×10-6 | 1.14×10-6 | 6.74×10-7 | 6.71×10-7 | 100 | 6.41×10-5 | 8.49×10-5 | |
1 600 | 1.04×10-6 | 4.12×10-7 | 1.31×10-5 | 1.11×10-5 | 3.89×10-6 | 4.68×10-6 | 6.27×10-7 | 6.37×10-7 | 150 | 7.65×10-5 | 2.52×10-5 | |
2 400 | 1.03×10-6 | 4.12×10-7 | 3.78×10-6 | 9.71×10-6 | 5.04×10-6 | 1.97×10-6 | 8.01×10-7 | 6.81×10-7 | 200 | 6.87×10-5 | 1.07×10-5 | |
3 200 | 9.82×10-7 | 4.12×10-7 | 1.84×10-6 | 5.79×10-6 | 1.61×10-6 | 1.73E-06 | 7.64×10-7 | 6.75×10-7 | 250 | 5.74×10-5 | 1.79×10-5 |
Table 3
Running time (ms) and acceleration ratio of algorithms with different dimensions under the test function f1~f6
函数 | 种群 | DE | HHO | GWO | WOA | 种群 | MFO | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPU/ ms | GPU/ ms | 加速比 | CPU/ ms | GPU/ ms | 加速比 | CPU/ ms | GPU/ ms | 加速比 | CPU/ ms | GPU/ ms | 加速比 | CPU/ ms | GPU/ ms | 加速比 | ||||
800 | 882.3 | 15.1 | 58.3 | 2 827.6 | 109.5 | 25.8 | 2 560.4 | 271.0 | 9.4 | 639.3 | 21.6 | 29.5 | 100 | 298.6 | 133.9 | 2.2 | ||
1 600 | 1 758.3 | 26.3 | 66.8 | 5 655.6 | 133.3 | 42.4 | 5 139.7 | 443.4 | 11.6 | 1 279.5 | 24.2 | 52.9 | 150 | 498.8 | 215.9 | 2.3 | ||
2 400 | 2 638.4 | 52.7 | 50.1 | 8 487.4 | 153.6 | 55.2 | 7 720.3 | 693.6 | 11.1 | 1 921.4 | 25.5 | 75.3 | 200 | 733.5 | 300.3 | 2.4 | ||
3 200 | 3 526.5 | 97.0 | 36.4 | 11 352.5 | 184.5 | 61.5 | 10 976.2 | 1 036.9 | 10.6 | 2 560.4 | 29.8 | 85.9 | 250 | 985.7 | 449.7 | 2.2 | ||
800 | 1 040.8 | 16.9 | 61.5 | 4 365.4 | 142.5 | 30.6 | 2 710.0 | 271.1 | 10.0 | 1 359.5 | 25.2 | 53.9 | 100 | 487.9 | 204.4 | 2.4 | ||
1 600 | 2 073.5 | 27.8 | 74.7 | 8 730.9 | 159.0 | 54.9 | 5 420.0 | 422.6 | 12.8 | 2 719.0 | 30.0 | 90.5 | 150 | 795.1 | 315.8 | 2.5 | ||
2 400 | 3 117.3 | 51.8 | 60.2 | 13 109.3 | 175.0 | 74.9 | 8 116.5 | 618.3 | 13.1 | 4 091.1 | 33.3 | 122.9 | 200 | 1 140.4 | 447.7 | 2.5 | ||
3 200 | 4 184.0 | 94.8 | 44.1 | 17 495.3 | 205.0 | 85.3 | 10 846.3 | 1 017.3 | 10.7 | 5 445.8 | 38.8 | 140.4 | 250 | 1 504.2 | 615.7 | 2.4 | ||
800 | 1 324.6 | 33.2 | 39.9 | 5 484.2 | 237.1 | 23.1 | 2 849.2 | 314.9 | 9.0 | 1 911.0 | 48.0 | 39.8 | 100 | 576.6 | 253.6 | 2.3 | ||
1 600 | 2 580.9 | 48.1 | 53.7 | 11 039.5 | 294.7 | 37.5 | 5 707.4 | 477.9 | 11.9 | 3 836.6 | 56.6 | 67.8 | 150 | 937.3 | 375.7 | 2.5 | ||
2 400 | 3 855.6 | 56.2 | 68.6 | 16 427.6 | 353.0 | 46.5 | 8 799.1 | 717.3 | 12.3 | 5 735.4 | 70.0 | 81.9 | 200 | 1 323.0 | 562.5 | 2.4 | ||
3 200 | 5 180.6 | 79.9 | 64.8 | 22 006.0 | 435.5 | 50.5 | 11 579.8 | 1 066.6 | 10.9 | 7 659.8 | 89.8 | 85.3 | 250 | 1 756.2 | 812.6 | 2.2 | ||
800 | 1 896.6 | 33.5 | 56.5 | 9 778.3 | 228.0 | 42.9 | 4 123.1 | 314.6 | 13.1 | 4 298.9 | 46.8 | 91.8 | 100 | 830.8 | 181.5 | 4.6 | ||
1 600 | 3 687.7 | 38.6 | 95.5 | 19 487.1 | 262.1 | 74.4 | 7 592.4 | 469.3 | 16.2 | 8 586.7 | 45.9 | 187.3 | 150 | 1 307.2 | 288.5 | 4.5 | ||
2 400 | 5 769.2 | 46.7 | 123.4 | 29 233.0 | 305.6 | 95.7 | 11 511.3 | 724.5 | 15.9 | 12 721.5 | 51.1 | 249.0 | 200 | 1 773.7 | 403.6 | 4.4 | ||
3 200 | 7 584.9 | 77.8 | 97.5 | 38 952.6 | 339.2 | 114.8 | 15 235.2 | 1 067.7 | 14.3 | 17 057.9 | 54.4 | 313.8 | 250 | 2 325.6 | 616.6 | 3.8 | ||
800 | 2 003.5 | 37.2 | 53.9 | 10 146.4 | 246.3 | 41.2 | 3 891.5 | 305.2 | 12.8 | 4 399.2 | 49.5 | 88.8 | 100 | 823.2 | 183.8 | 4.5 | ||
1 600 | 3 996.5 | 42.2 | 94.7 | 20 151.7 | 285.5 | 70.6 | 7 805.9 | 472.1 | 16.5 | 8 727.3 | 50.3 | 173.5 | 150 | 1 309.3 | 298.0 | 4.4 | ||
2 400 | 5 998.1 | 48.1 | 124.8 | 30 161.1 | 334.4 | 90.2 | 11 775.4 | 714.1 | 16.5 | 13 055.5 | 55.1 | 236.8 | 200 | 1 805.7 | 421.7 | 4.3 | ||
3 200 | 8 029.1 | 72.0 | 111.5 | 40 053.3 | 369.9 | 108.3 | 16 529.8 | 1 064.2 | 15.5 | 17 396.9 | 61.3 | 283.9 | 250 | 2 377.5 | 629.4 | 3.8 | ||
800 | 24 800.0 | 454.2 | 54.6 | 87 272.0 | 1 235.8 | 70.6 | 28 577.0 | 762.7 | 37.5 | 52 439.2 | 463.1 | 113.2 | 100 | 3 566.8 | 672.8 | 5.3 | ||
1 600 | 49 536.9 | 486.0 | 101.9 | 172 596.4 | 1 479.3 | 116.7 | 57 565.1 | 925.8 | 62.2 | 104 504.1 | 512.7 | 203.8 | 150 | 5 445.8 | 795.1 | 6.8 | ||
2 400 | 74 420.2 | 502.5 | 148.1 | 262 271.5 | 1 717.4 | 152.7 | 84 221.4 | 1 138.4 | 74.0 | 148 271.4 | 486.0 | 305.1 | 200 | 7 330.2 | 956.1 | 7.7 | ||
3 200 | 99 287.5 | 554.3 | 179.1 | 351 528.8 | 1 967.9 | 178.6 | 112 004.3 | 1 506.7 | 74.3 | 199 616.9 | 557.2 | 358.2 | 250 | 9 241.3 | 1 261.7 | 7.3 |
1 | 范衠, 朱贵杰, 李文姬, 等. 进化计算在复杂机电系统设计自动化中的应用综述[J]. 自动化学报, 2021, 47(7): 1495-1515. |
Fan Zhun, Zhu Guijie, Li Wenji, et al. Applications of Evolutionary Computation in the Design Automation of Complex Mechatronic System: A Survey[J]. Acta Automatica Sinica, 2021, 47(7): 1495-1515. | |
2 | 丁进良, 杨翠娥, 陈远东, 等. 复杂工业过程智能优化决策系统的现状与展望[J]. 自动化学报, 2018, 44(11): 1931-1943. |
Ding Jinliang, Yang Cuie, Chen Yuandong, et al. Research Progress and Prospects of Intelligent Optimization Decision Making in Complex Industrial Process[J]. Acta Automatica Sinica, 2018, 44(11): 1931-1943. | |
3 | 韩红桂, 张璐, 卢薇, 等. 城市污水处理过程动态多目标智能优化控制研究[J]. 自动化学报, 2021, 47(3): 620-629. |
Han Honggui, Zhang Lu, Lu Wei, et al. Research on Dynamic Multiobjective Intelligent Optimal Control for Municipal Wastewater Treatment Process[J]. Acta Automatica Sinica, 2021, 47(3): 620-629. | |
4 | 李晓苏, 晁涛, 王松艳. 基于鱼群算法的运载火箭上升段弹道优化设计[J]. 系统仿真学报, 2018, 30(12): 4747-4753, 4759. |
Li Xiaosu, Chao Tao, Wang Songyan. Trajectory Optimization Design of Ascending Phase for Solid Launch Vehicle Based on Fish-swarm Algorithm[J]. Journal of System Simulation, 2018, 30(12): 4747-4753, 4759. | |
5 | Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science(MHS'95). Piscataway: IEEE, 1995: 39-43. |
6 | Storn Rainer, Price K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
7 | Blum Christian. Ant Colony Optimization: Introduction and Recent Trends[J]. Physics of Life Reviews, 2005, 2(4): 353-373. |
8 | Mirjalili S, Seyed Mohammad Mirjalili, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
9 | Mirjalili S. Moth-flame Optimization Algorithm: A Novel Nature-inspired Heuristic Paradigm[J]. Knowledge-Based Systems, 2015, 89: 228-249. |
10 | Mirjalili S, Lewis A. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
11 | Ali Asghar Heidari, Mirjalili S, Faris Hossam, et al. Harris Hawks Optimization: Algorithm and Applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. |
12 | Li Shimin, Chen Huiling, Wang Mingjing, et al. Slime Mould Algorithm: A New Method for Stochastic Optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323. |
13 | Wang Zhiheng, Liu Jianhua. Flamingo Search Algorithm: A New Swarm Intelligence Optimization Algorithm[J]. IEEE Access, 2021, 9: 88564-88582. |
14 | Zhao Weiguo, Wang Liying, Mirjalili S. Artificial Hummingbird Algorithm: A New Bio-inspired Optimizer with Its Engineering Applications[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114194. |
15 | Xue Bing, Zhang Mengjie, Browne W N. Particle Swarm Optimization for Feature Selection in Classification: A Multi-objective Approach[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1656-1671. |
16 | Sun Yifan, Agostini N B, Dong Shi, et al. Summarizing CPU and GPU Design Trends with Product Data[EB/OL]. (2020-07-13) [2023-01-10]. . |
17 | 龚春叶, 刘杰, 包为民, 等. 后摩尔时代国产高性能并行应用软件生态建设综述[J]. 系统仿真学报, 2022, 34(10): 2107-2118. |
Gong Chunye, Liu Jie, Bao Weimin, et al. Review on Ecological Construction of Domestic High-performance Parallel Application Software in Post Moore Era[J]. Journal of System Simulation, 2022, 34(10): 2107-2118. | |
18 | Surendra Kumar Shukla, Pant Bhaskar. Characterization of SPEC2006 Benchmarks Under Multicore Platform to Identify Critical Architectural Aspects[C]//International Conference on IoT, Intelligent Computing and Security. Singapore: Springer Nature Singapore, 2023: 199-206. |
19 | 陈国军, 刘岩. 基于并行遗传算法的公路线形优化[J]. 系统仿真学报, 2013, 25(10): 2332-2336. |
Chen Guojun, Liu Yan. Optimization of Road Alignment Using Parallel Genetic Algorithms[J]. Journal of System Simulation, 2013, 25(10): 2332-2336. | |
20 | Han Wencheng, Li Hao, Gong Maoguo, et al. Multi-swarm Particle Swarm Optimization Based on CUDA for Sparse Reconstruction[J]. Swarm and Evolutionary Computation, 2022, 75: 101153. |
21 | Lucas de P Veronese, Krohling Renato A. Differential Evolution Algorithm on the GPU with C-CUDA[C]//IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2010: 1-7. |
22 | Roberge V, Tarbouchi M. Hybrid Deterministic Non-deterministic Data-parallel Algorithm for Real-time Unmanned Aerial Vehicle Trajectory Planning in CUDA[J]. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2022, 2: 100085. |
23 | Jayapriya J, Arock Michael. A Parallel GWO Technique for Aligning Multiple Molecular Sequences[C]//2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Piscataway: IEEE, 2015: 210-215. |
24 | Ueda Satoshi, Ogawa Hideaki. Multi-fidelity Approach for Global Trajectory Optimization Using GPU-based Highly Parallel Architecture[J]. Aerospace Science and Technology, 2021, 116: 106829. |
25 | Tan Ying, Ding Ke. A Survey on GPU-based Implementation of Swarm Intelligence Algorithms[J]. IEEE Transactions on Cybernetics, 2016, 46(9): 2028-2041. |
26 | 张国, 王锐, 雷洪涛, 等. 并行智能优化算法研究进展[J]. 控制理论与应用, 2023, 40(1): 1-11. |
Zhang Guo, Wang Rui, Lei Hongtao, et al. Survey on Parallel Intelligent Optimization Algorithms[J]. Control Theory & Applications, 2023, 40(1): 1-11. | |
27 | 姜洋洋. 基于卷积神经网络与CUDA加速计算的手势识别算法应用研究[J]. 系统仿真技术, 2020, 16(1): 22-26. |
Jiang Yangyang. Development of Gesture Recognition Algorithm Based on Convolutional Neural Network and CUDA Accelerated Calculation[J]. System Simulation Technology, 2020, 16(1): 22-26. | |
28 | Li Yan. Implementation of CUDA and Hadoop Based System for Intelligent Guiding Evaluation Algorithm Based on Data Center Data Mining[C]//2022 International Conference on Inventive Computation Technologies (ICICT). Piscataway: IEEE, 2022: 1119-1125. |
29 | Cheng J, Grossman M, McKercher T. Professional CUDA C Programming[M]. Indianapolis: John Wiley & Sons, 2014. |
30 | Zhuo Yanhong, Zhang Tao, Du Feng, et al. A Parallel Particle Swarm Optimization Algorithm Based on GPU/CUDA[J]. Applied Soft Computing, 2023, 144: 110499. |
31 | Elbes Mohammed, Alzubi Shadi, Kanan Tarek, et al. A Survey on Particle Swarm Optimization with Emphasis on Engineering and Network Applications[J]. Evolutionary Intelligence, 2019, 12(2): 113-129. |
[1] | Mao Tianlu, He Xiangjun, Huang Yingfan, Jiang Hao. Modeling on Information Exchange Behavior in Emergency Evacuation [J]. Journal of System Simulation, 2018, 30(7): 2482-2488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||