Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (1): 232-248.doi: 10.16182/j.issn1004731x.joss.22-1009
• Papers • Previous Articles
Feng Chen(), You Xiaoming(
), Liu Sheng
Received:
2022-08-26
Revised:
2022-10-17
Online:
2024-01-20
Published:
2024-01-19
Contact:
You Xiaoming
E-mail:845346965@qq.com;yxm6301@163.com
CLC Number:
Feng Chen, You Xiaoming, Liu Sheng. Heterogeneous Multi-ant Colony Algorithm Combining Competitive Interaction Strategy and Eliminating-reconstructing Mechanism[J]. Journal of System Simulation, 2024, 36(1): 232-248.
Table 5
Performance comparison of optimization schemes
TSP | 标准最优解 | 算法模型 | 最优解 | 最差解 | 平均解 | 误差率 | 迭代次数 |
---|---|---|---|---|---|---|---|
eil51 | 426 | A | 426 | 428 | 426.8 | 0 | 220 |
B | 426 | 427 | 426.5 | 0 | 125 | ||
C | 426 | 427 | 426.3 | 0 | 60 | ||
eil76 | 538 | A | 538 | 543 | 539.6 | 0 | 642 |
B | 538 | 543 | 538.7 | 0 | 519 | ||
C | 538 | 542 | 539.2 | 0 | 210 | ||
kroA100 | 21 282 | A | 21 282 | 21 379 | 21 310.9 | 0 | 1 210 |
B | 21 282 | 21 379 | 21 306.8 | 0 | 679 | ||
C | 21 282 | 21 379 | 21 302.8 | 0 | 523 | ||
kroA200 | 29 368 | A | 29 401 | 30 005 | 29 547.2 | 0.11 | 1 450 |
B | 29 382 | 29 777 | 29 518.9 | 0.05 | 834 | ||
C | 29 368 | 29 722 | 29 489.5 | 0 | 520 | ||
a280 | 2 579 | A | 2 597 | 2 668 | 2 624.6 | 0.69 | 1 540 |
B | 2 584 | 2 650 | 2 610 | 0.19 | 1 220 | ||
C | 2 579 | 2 634 | 2 604.4 | 0 | 1 134 | ||
lin318 | 42 029 | A | 42 608 | 43 577 | 43 180 | 1.38 | 1 409 |
B | 42 475 | 43 464 | 43 053.4 | 1.06 | 1 091 | ||
C | 42 297 | 43 524 | 42 803.8 | 0.64 | 775 |
Table 6
Performance comparison with traditional algorithms
TSP | 标准最优解 | 算法 | 最优解 | 最差解 | 平均解 | 误差率/% | 迭代次数 |
---|---|---|---|---|---|---|---|
eil51 | 426 | ACS | 427 | 436 | 428.0 | 0 | 306 |
MMAS | 426 | 432 | 428.0 | 0 | 139 | ||
CEACO | 426 | 427 | 426.3 | 0 | 60 | ||
eil76 | 538 | ACS | 538 | 549 | 543.5 | 0.00 | 410 |
MMAS | 541 | 552 | 546.6 | 0.56 | 580 | ||
CEACO | 538 | 542 | 539.2 | 0 | 210 | ||
korA100 | 21 282 | ACS | 21 282 | 21 673 | 21 392.6 | 0 | 656 |
MMAS | 21 292 | 21 841 | 21 467.6 | 0.04 | 1 226 | ||
CEACO | 21 282 | 21 379 | 21 302.8 | 0 | 523 | ||
kroB100 | 22 141 | ACS | 22 199 | 22 885 | 22 315.5 | 0.26 | 500 |
MMAS | 22 220 | 22 649 | 22 420.8 | 0.36 | 638 | ||
CEACO | 22 141 | 22 320 | 22 235.6 | 0 | 355 | ||
ch130 | 6 110 | ACS | 6 150 | 6 364 | 6 220.6 | 0.65 | 1 190 |
MMAS | 6 173 | 6 313 | 6 221.5 | 1.03 | 1 162 | ||
CEACO | 6 110 | 6 173 | 6 148.8 | 0 | 517 | ||
ch150 | 6 528 | ACS | 6 553 | 6 650 | 6 586.6 | 0.38 | 233 |
MMAS | 6 548 | 6 620 | 6 580.0 | 0.31 | 607 | ||
CEACO | 6 528 | 6 580 | 6 558.9 | 0 | 756 | ||
kroA150 | 26 524 | ACS | 26 640 | 27 853 | 27 179.8 | 0.44 | 1 252 |
MMAS | 26 677 | 27 130 | 26 962.1 | 0.58 | 1 878 | ||
CEACO | 26 524 | 27 066 | 26 843.5 | 0 | 1 643 | ||
kroB150 | 26 130 | ACS | 26 141 | 27 104 | 26 578.7 | 0.04 | 1 654 |
MMAS | 26 135 | 26 691 | 26 404.0 | 0.02 | 1 744 | ||
CEACO | 26 130 | 26 502 | 26 234.4 | 0.00 | 310 | ||
kroA200 | 29 368 | ACS | 29 503 | 30 275 | 29 848.0 | 0.46 | 1 942 |
MMAS | 29 401 | 29 920 | 29 634.9 | 0.11 | 1 714 | ||
CEACO | 29 368 | 29 722 | 29 489.5 | 0 | 520 | ||
kroB200 | 29 437 | ACS | 29 660 | 30 466 | 30 106.9 | 0.75 | 1 597 |
MMAS | 29 586 | 30 559 | 30 204.4 | 0.51 | 1 920 | ||
CEACO | 29 459 | 30 052 | 29 811.7 | 0.07 | 634 | ||
tsp225 | 3 916 | ACS | 3 929 | 4 038 | 3 984.5 | 0.33 | 653 |
MMAS | 3 935 | 4 078 | 3 996.4 | 0.49 | 1058 | ||
CEACO | 3 920 | 4 017 | 3 958.5 | 0.10 | 845 | ||
a280 | 2 579 | ACS | 2 584 | 2 727 | 2 634.2 | 0.19 | 1 297 |
MMAS | 2 601 | 2 699 | 2 631.3 | 0.85 | 1 581 | ||
CEACO | 2 579 | 2 634 | 2 604.4 | 0.00 | 1 134 | ||
lin318 | 42 029 | ACS | 42 741 | 44 851 | 43 385.3 | 1.69 | 1 817 |
MMAS | 43 074 | 44 695 | 43 611.5 | 2.49 | 1 887 | ||
CEACO | 42 297 | 43 524 | 42 803.8 | 0.64 | 775 | ||
f417 | 11 861 | ACS | 12 039 | 12 346 | 12 153.4 | 1.50 | 1 910 |
MMAS | 12 050 | 12 506 | 12 259.5 | 1.60 | 1 990 | ||
CEACO | 11 971 | 12 238 | 12 078.0 | 0.93 | 959 | ||
pr439 | 107 217 | ACS | 108 625 | 114 208 | 110 774.5 | 1.31 | 1 831 |
MMAS | 108 322 | 118 864 | 110 815.9 | 1.03 | 1 896 | ||
CEACO | 107 818 | 113 112 | 110 112.3 | 0.56 | 1 045 |
Table 7
Comparison with other improved algorithms
TSP | 算法 | 最优解 | 平均解 | 误差率/% | TSP | 算法 | 最优解 | 平均解 | 误差率/% |
---|---|---|---|---|---|---|---|---|---|
eil51 | CEACO | 426 | 426.3 | 0 | kroA200 | CEACO | 29 368 | 29489.5 | 0 |
GA-SAC | 426 | 427.4 | 0 | GA-SAC | ─ | ─ | ─ | ||
SOS-ACO | 426 | 428.1 | 0 | SOS-ACO | 29 413 | 29 520.2 | 0.15 | ||
PBACO | 426 | 427 | 0 | PBACO | 29 383 | 29 768 | 0.05 | ||
eil76 | CEACO | 538 | 539.2 | 0 | a280 | CEACO | 2 579 | 2 604.4 | 0 |
GA-SAC | 538 | 539.3 | 0 | GA-SAC | 2 609 | 2 640.8 | 1.16 | ||
SOS-ACO | 538 | 541.7 | 0 | SOS-ACO | ─ | ─ | ─ | ||
PBACO | 538 | 540 | 0 | PBACO | 2 590 | 2 617 | 0.42 | ||
kroA100 | CEACO | 21 282 | 21 302.8 | 0 | lin318 | CEACO | 42 297 | 42 803.8 | 0.64 |
GA-SAC | 21 282 | 21 300.1 | 0 | GA-SAC | 42 329 | 42 902.4 | 0.71 | ||
SOS-ACO | 21 282 | 21 290.1 | 0 | SOS-ACO | 42 473 | 42 762.7 | 1.05 | ||
PBACO | 21 282 | 21 345 | 0 | PBACO | 42 384 | 42 432 | 0.84 | ||
ch150 | CEACO | 6 528 | 6 558.9 | 0 | pr439 | CEACO | 107 818 | 110 112.3 | 0.56 |
GA-SAC | ─ | ─ | ─ | GA-SAC | ─ | ─ | ─ | ||
SOS-ACO | 6 558 | 6 571.2 | 0.46 | SOS-ACO | 107 978 | 108 873.8 | 0.71 | ||
PBACO | 6 533 | 6 551 | 0.07 | PBACO | ─ | ─ | ─ |
1 | Dorigo M, Stützle Thomas. Ant Colony Optimization[M]. Cambridge: MIT Press, 2004. |
2 | Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29-41. |
3 | Rodammer F A, White K P. A Recent Survey of Production Scheduling[J]. IEEE Transactions on Systems, Man and Cybernetics, 1988, 18(6): 841-851. |
4 | Admane L, Benatchba K, Koudil M, et al. Using Ant Colonies to Solve Data-mining Problems[C]//2004 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2004: 3151-3157. |
5 | Chu C H, Gu Junhua, Hou Xiangdan, et al. A Heuristic Ant Algorithm for Solving QoS Multicast Routing Problem[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2002: 1630-1635. |
6 | Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. |
7 | Stützle Thomas, Hoos Holger H. MAX-MIN Ant System[J]. Future Generation Computer Systems, 2000, 16(8): 889-914. |
8 | Zhao Haitong, Zhang Changsheng. An Ant Colony Optimization Algorithm with Evolutionary Experience-guided Pheromone Updating Strategies for Multi-objective Optimization[J]. Expert Systems with Applications, 2022, 201: 117151. |
9 | Tuani A F, Keedwell E, Collett M. Heterogenous Adaptive Ant Colony Optimization with 3-opt Local Search for the Travelling Salesman Problem[J]. Applied Soft Computing, 2020, 97, Part B: 106720. |
10 | Sangeetha V, Krishankumar R, Ravichandran K S, et al. Energy-efficient Green Ant Colony Optimization for Path Planning in Dynamic 3D Environments[J]. Soft Computing, 2021, 25(6): 4749-4769. |
11 | 王铁, 胡泓. 基于K-means信息挥发速率动态调整的改进蚁群算法[J]. 机械与电子, 2020, 38(2): 25-29. |
Wang Tie, Hu Hong. An Improved Ant Colony Algorithm Based on K-means and Dynamic Volatility Rate Adjustment Strategy[J]. Machinery & Electronics, 2020, 38(2): 25-29. | |
12 | Gambardella L M, Taillard E D, Agazzi G. A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows[EB/OL]. (2016-04-28) [2022-08-17]. . |
13 | Wang Yuan, Wang Ling, Peng Zhiping, et al. A Multi Ant System Based Hybrid Heuristic Algorithm for Vehicle Routing Problem with Service Time Customization[J]. Swarm and Evolutionary Computation, 2019, 50: 100563. |
14 | 刘双双, 黄宜庆. 多策略蚁群算法在机器人路径规划中的应用[J]. 计算机工程与应用, 2022, 58(6): 278-286. |
Liu Shuangshuang, Huang Yiqing. Application of Multi-strategy Ant Colony Algorithm in Robot Path Planning[J]. Computer Engineering and Applications, 2022, 58(6): 278-286. | |
15 | Zhang Dehui, You Xiaoming, Liu Sheng, et al. Multi-colony Ant Colony Optimization Based on Generalized Jaccard Similarity Recommendation Strategy[J]. IEEE Access, 2019, 7: 157303-157317. |
16 | 张鹏, 薛宏全, 原欣伟. 基于相似度的自适应异类多种群蚁群算法[J]. 计算机工程与应用, 2014, 50(19): 37-41. |
Zhang Peng, Xue Hongquan, Yuan Xinwei. Adaptive Heterogeneous Multiple Ant Colonies Algorithm Based on Similarity[J]. Computer Engineering and Applications, 2014, 50(19): 37-41. | |
17 | 陈斌, 刘卫国. 基于SAC模型的改进遗传算法求解TSP问题[J]. 计算机科学与探索, 2021, 15(9): 1680-1693. |
Chen Bin, Liu Weiguo. SAC Model Based Improved Genetic Algorithm for Solving TSP[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(9): 1680-1693. | |
18 | Wang Yong, Han Zunpu. Ant Colony Optimization for Traveling Salesman Problem Based on Parameters Optimization[J]. Applied Soft Computing, 2021, 107: 107439. |
19 | 赵家波, 游晓明, 刘升. 结合价格波动策略与动态回溯机制的蚁群算法[J]. 计算机科学与探索, 2022, 16(6): 1390-1404. |
Zhao Jiabo, You Xiaoming, Liu Sheng. Ant Colony Algorithm Based on Price Fluctuation Strategy and Dynamic Back-tracking Mechanism[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(6): 1390-1404. |
[1] | Jia Xu, Fengqing Han, Qixin Liu, Xiaoxia Xue. Bioinformation Heuristic Genetic Algorithm for Solving TSP [J]. Journal of System Simulation, 2022, 34(8): 1811-1819. |
[2] | Tang Jie, Cao Jinxin. Research on Integrated Optimization Approach for Car-sharing Systems [J]. Journal of System Simulation, 2021, 33(8): 1959-1968. |
[3] | Ye Duofu, Liu Gang, He Bing. Multi-chromosome Genetic Algorithm for Multiple Traveling Salesman Problem [J]. Journal of System Simulation, 2019, 31(1): 36-42. |
[4] | Xu Xiaoping, Zhu Qiuqiu, Wang Feng. Particle Swarm Ant Colony Optimization Algorithm for Solving Circle Permutation Problem [J]. Journal of System Simulation, 2017, 29(2): 248-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||