[1] 崔平远, 赵泽端, 朱圣英. 火星大气进入段轨迹优化与制导技术研究进展[J]. 宇航学报, 2019, 40(6): 611-620. Cui Pingyuan, Zhao Zeduan, Zhu Shengying.Research Progress of Trajectory Optimization and Guidance Techniques for Mars Atmospheric Entry[J]. Journal of Astronautics, 2019, 40(6): 611-620. [2] Braun R D, Manning R M. Mars Exploration Entry, Descent, and Landing Challenges[J]. Journal of Spacecraft and Rockets (S0022-4650), 2007, 44(2): 310-323. [3] Li S, Jiang X Q.Review and Prospect of Guidance and Control for Mars Atmospheric Entry[J]. Progress in Aerospace Sciences (S0376-0421), 2014, 69: 40-57. [4] Zhang Y B, Xiao M L, Wang Z H, et al.Robust Three-stage Unscented Kalman Filter for Mars Entry Phase Navigation[J]. Information Fusion (S1566-2535), 2019, 51: 67-75. [5] 葛丹桐, 崔平远, 高艾. 火星安全着陆轨迹快速生成的能控集法[J]. 宇航学报, 2017, 38(5): 497-505. Ge Dantong, Cui Pingyuan, Gao Ai.Rapid Generateon of Mars safe Landing Trajectory Based on Reachability Set[J]. Journal of Astronautics, 2017, 38(5): 497-505. [6] 崔平远, 胡海静, 朱圣英. 火星精确着陆制导问题分析与展望[J]. 宇航学报, 2014, 35(3): 245-253. Cui Pingyuan, Hu Haijing, Zhu Shengying.Analysis and Prospect of Guidance Aspects for Mars Precision Landing[J]. Acta Astronautics, 2014, 35(3): 245-253. [7] 于皓. 火星进入段轨迹优化及跟踪控制[D]. 哈尔滨: 哈尔滨工业大学, 2020. Yu Hao.Trajectory Optimization and Tracking Controlfor the Mars Entry Phase[D]. Harbin: Harbin Institute of Technology, 2020. [8] Roenneke A, Well K.Nonlinear Drag-tracking Control Applied to Optimal Low-lift Reentry Guidance[C]// Guidance, Navigation, and Control Conference.San Diego, CA, USA: Guidance, Navigation, and Control Conference, 1996: 3698. [9] Benito J, Mease K.Nonlinear Predictive Controller for Drag Tracking in Entry Guidance[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA: AIAA, 2008: 1-14. [10] Liang Z, Duan G, Ren Z.Mars Entry Guidance Based on an Adaptive Reference Drag Profile[J]. Advances in Space Research (S0273-1177), 2017, 60(3): 692-701. [11] Li S, Peng Y M.Neural Network-based Sliding Mode Variable Structure Control for Mars Entry[J]. Journal of Aerospace Engineering (S0954-4100), 2012, 226(G11): 1373-1386. [12] 戴娟, 苏中, 刘洪, 等. 行星着陆大气进入段自适应滑模抗扰控制方法[J]. 宇航学报, 2019, 40(12): 1438-1443. Dai Juan, Su Zhong, Liu Hong, et al.Planetary Landing Disturbance Rejection Control Based on Adaptive Sliding Mode[J]. Acta Astronautics, 2019, 40(12): 1438-1443. [13] 许康. 火星探测器着陆过程制导律设计与仿真研究[D].哈尔滨: 哈尔滨工业大学, 2013. Xu Kang.Guidance Law Design and Simulation for Mars Landing[D]. Harbin: Harbin Institute of Technology, 2013. [14] 李翔, 朱东方, 胥彪, 等. 火星大气进入滑模自抗扰制导方法[J]. 飞控与探测, 2019, 2(4): 37-45. Li Xiang, Zhu Dongfang, Xu Biao, et al.Active Disturbance Rejection Sliding Mode Control for Mars Atmospheric Entry Guidance[J]. Flight Control & Detection, 2019, 2(4): 37-45. [15] 王香, 张永林. 基于RBF神经网络的AUV路径跟踪分数阶滑模控制[J]. 水下无人系统学报, 2020, 28(3): 284-290. Wang Xiang, Zhang Yonglin.Fractional-Order Sliding Mode Control Based on RBF Neural Network for AUV Path Tracking[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 284-290. [16] Li Y, Chen Y Q, Igor P.Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems[J]. Automatica (S0005-1098), 2009, 45(8): 1965-1969. |