[1] Liu S Q, Zhang J C, Zhu R.A Wearable Human Motion Tracking Device Using Micro Flow Sensor Incorporating a Micro Accelerometer[J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 2019, 67(4): 940-948. [2] Wong W K, Juwono F H, Khoo B T T. Multi-features Capacitive Hand Gesture Recognition Sensor: a Machine Learning Approach[J]. IEEE Sensors Journal (S1530-437X), 2021, 21(6): 8441-8450. [3] Valueva M V, Nagornov N N, Lyakhov P A, et al.Application of the Residue Number System to Reduce Hardware Costs of the Convolutional Neural Network Implementation[J]. Mathematics and Computers in Simulation (S0378-4754), 2020, 177: 232-243. [4] Cao Z, Hidalgo G, Simon T, et al.OpenPose: Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2019, 43(1): 172-186. [5] Mao Q C, Sun H M, Liu Y B, et al.Mini-YOLOv3: Real-time Object Detector for Embedded Applications[J]. IEEE Access (S2169-3536), 2019, 7: 133529-133538. [6] Wu D, Lv S, Jiang M, et al.Using Channel Pruning-based YOLO v4 Deep Learning Algorithm for the Real-time and Accurate Detection of Apple Flowers in Natural Environments[J]. Computers and Electronics in Agriculture (S0168-1699), 2020, 178: 105742. [7] 朱洪堃, 殷佳炜, 冯文宇, 等. 一种轻量化实时人体姿势检测模型研究与应用[J]. 系统仿真学报, 2020, 32(11): 2155-2165. Zhu Hongkun, Yin Jiawei, Feng Wenyu, et al.Research and Application of a Lightweight Real-time Human Pose Detection Model[J]. Journal of System Simulation, 2020, 32(11): 2155-2165. [8] 冯文宇, 朱洪堃, 殷佳炜, 等. 无人CT智能姿态识别算法研究[J]. 仪器仪表学报, 2020, 41(8): 188-195. Feng Wenyu, Zhu Hongkun, Yin Jiawei, et al.Research on Intelligent Attitude Recognition Algorithm of Unmanned CT[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 188-195. [9] Fu L, Feng Y, Wu J, et al.Fast and Accurate Detection of Kiwifruit in Orchard Using Improved YOLOv3-tiny Model[J]. Precision Agriculture (S1385-2256), 2021, 22(3): 754-776. [10] Bao C, Xie T, Feng W, et al.A Power-Efficient Optimizing Framework FPGA Accelerator Based on Winograd for YOLO[J]. IEEE Access (S2169-3536), 2020, 8: 94307-94317. [11] Li Y, Li S, Du H, et al.YOLO-ACN: Focusing on Small Target and Occluded Object Detection[J]. IEEE Access (S2169-3536), 2020, 8: 227288-227303. [12] Zhang X, Zhou X, Lin M, et al.Shufflenet: An extremely Efficient Convolutional Neural Network for Mobile Devices[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: CVPR, 2018: 6848-6856. [13] Han K, Wang Y, Tian Q, et al.Ghostnet: More Features from Cheap Operations[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. ELECTR NETWORK: CVPR, 2020: 1580-1589. [14] Hu J, Shen L, Albanie S, et al.Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2020, 42(8): 2011-2023. [15] Fan H, Mei X, Prokhorov D, et al.Multi-level Contextual RNNS with Attention Model for Scene Labeling[J]. IEEE Transactions on Intelligent Transportation Systems (S1524-9050), 2018, 19(11): 3475-3485. [16] 石敏, 姚瀚钦, 李淳芃, 等. 基于深度Alignment网络的足部测量[J]. 系统仿真学报, 2020, 32(7): 1267-1278. Shi Min, Yao Hanqin, Li Chunpeng, et al.Foot Measurement Based on Deep Alignment Network[J]. Journal of System Simulation, 2020, 32(7): 1267-1278. [17] Duan P, Wang T, Cui M, et al.Multi-person Pose Estimation Based on a Deep Convolutional Neural Network[J]. Journal of Visual Communication and Image Representation (S1047-3203), 2019, 62: 245-252. [18] Shankar V, Roelofs R, Mania H, et al.Evaluating Machine Accuracy on Imagenet[C]// International Conference on Machine Learning. Salt Lake City: PMLR, 2020: 8634-8644. [19] Suh S, Lee H, Lukowicz P, et al.CEGAN: Classification Enhancement Generative Adversarial Networks for Unraveling Data Imbalance Problems[J]. Neural Networks (S0893-6080), 2021, 133: 69-86. [20] Sandler M, Howard A, Zhu M, et al.Mobilenetv2: Inverted Residuals and Linear Bottlenecks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: CVPR, 2018: 4510-4520. [21] Tan M, Le Q.Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks[C]// International Conference on Machine Learning. Long Beach: LCML, 2019: 6105-6114. [22] Huang G, Liu S, Van D M L, et al. Condensenet: An Efficient Densenet Using Learned Group Convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Houston: Medical Imaging Conference-Image-Guided Procedures, 2018: 2752-2761. |