Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (3): 584-602.doi: 10.16182/j.issn1004731x.joss.21-0190
• Modeling Theory and Methodology • Previous Articles Next Articles
Received:
2021-03-09
Revised:
2021-05-06
Online:
2022-03-18
Published:
2022-03-22
Contact:
Chunming Ye
E-mail:dj8519@163.com;yechm6464@163.com
CLC Number:
Jun Dong, Chunming Ye. Research on Joint Optimization of Energy-Saving Distributed Manufacturing and Preventive Maintenance for Semiconductor Wafers[J]. Journal of System Simulation, 2022, 34(3): 584-602.
Table 1
Main parameters and their values in the data set
加工 阶段 | 参数名称 | 取值 |
---|---|---|
全阶段 | 工件数/个 | 20/50/100 |
工位数/个 | 6/7/8 | |
电能碳排放因子/(kgCO2·J-1) | 1.874 2×10-7 | |
机器遗忘因子 | U[0.1,0.3] | |
机器上润滑油的使用量/L | U[0.2,0.4] | |
机器上润滑油的有效使用期/h | U[ | |
润滑油碳排放因子/(kgCO2·J-1) | 469 | |
机器退化率 | 0.018 | |
制造 阶段 | 工件在各个工位的加工时间/min | U[ |
每个工位上机器的加工功率/(kW·h-1) | U[ | |
每个工位上机器的空转功率/(kW·h-1) | U[ | |
设备预维护的固定成本(元) | U[ | |
加工层次 | 4/5 | |
每个工位上机器数(台) | U[ | |
设备预维护时间/min | U[ | |
工人预维护的单位工资(元) | U[ | |
检测维修阶段 | 工件的检测修复时间/min | U[ |
工位数/个 | 2 | |
每个工位上机器的加工功率/(kW·h-1) | U[ | |
每个工位上的机器数(台) | 2 | |
加工层次 | 2 | |
每个工位上机器的空转功率/(kW·h-1) | U[ |
Table 2
Initial population quality comparisons
算例 | 工厂数为2 | 工厂数为3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
初始化种群融合策略 | 初始化种群随机生成策略 | 初始化种群融合策略 | 初始化种群随机生成策略 | |||||||||
SP | IGD | SP | IGD | SP | IGD | SP | IGD | |||||
20*6*4 | 0.180 6 | 0.092 1 | 80 | 0.241 1 | 0.262 2 | 20 | 0.184 4 | 0.102 3 | 76 | 0.171 9 | 0.267 8 | 24 |
20*7*4 | 0.188 6 | 0.107 5 | 78 | 0.220 0 | 02 258 | 22 | 0.165 2 | 0.104 2 | 75 | 0.207 7 | 0.188 0 | 25 |
20*8*4 | 0.163 7 | 0.109 1 | 77 | 0.232 4 | 0.229 0 | 23 | 0.161 5 | 0.062 9 | 80 | 0.182 3 | 0.184 8 | 20 |
20*6*5 | 0.233 1 | 0.110 4 | 69 | 0.302 6 | 0.271 6 | 31 | 0.162 3 | 0.100 6 | 72 | 0.194 7 | 0.202 3 | 28 |
20*7*5 | 0.158 1 | 0.091 8 | 80 | 0.243 4 | 0.257 6 | 20 | 0.164 0 | 0.068 6 | 84 | 0.211 2 | 0.208 2 | 16 |
20*8*5 | 0.154 5 | 0.080 7 | 78 | 0.168 0 | 0.174 0 | 22 | 0.164 2 | 0.081 7 | 78 | 0.191 4 | 0.183 8 | 22 |
50*6*4 | 0.338 3 | 0.241 9 | 73 | 0.352 3 | 0.335 1 | 27 | 0.325 2 | 0.095 7 | 85 | 0.330 5 | 0.346 7 | 15 |
50*7*4 | 0.229 7 | 0.149 7 | 76 | 0.186 9 | 0.339 3 | 24 | 0.282 6 | 0.154 0 | 72 | 0.236 4 | 0.372 4 | 28 |
50*8*4 | 0.227 8 | 0.100 9 | 78 | 0.239 4 | 0.241 6 | 22 | 0.296 9 | 0.165 6 | 76 | 0.208 0 | 0.354 4 | 24 |
50*6*5 | 0.286 8 | 0.120 4 | 76 | 0.353 7 | 0.358 4 | 24 | 0.314 5 | 0.119 1 | 82 | 0.307 2 | 0.378 7 | 18 |
50*7*5 | 0.258 2 | 0.117 1 | 77 | 0.226 7 | 0.394 4 | 23 | 0.240 4 | 0.139 9 | 76 | 0.379 6 | 0.335 7 | 24 |
50*8*5 | 0.203 4 | 0.112 1 | 68 | 0.387 5 | 0.260 5 | 31 | 0.204 2 | 0.137 1 | 85 | 0.425 8 | 0.398 0 | 15 |
100*6*4 | 0.204 9 | 0.124 1 | 72 | 0.262 5 | 0.273 4 | 28 | 0.314 8 | 0.139 7 | 67 | 0.274 1 | 0.304 4 | 33 |
100*7*4 | 0.193 9 | 0.158 9 | 79 | 0.176 9 | 0.304 1 | 21 | 0.336 5 | 0.200 2 | 72 | 0.243 8 | 0.335 4 | 28 |
100*8*4 | 0.244 1 | 0.159 0 | 64 | 0.377 9 | 0.310 3 | 36 | 0.269 9 | 0.172 4 | 67 | 0.264 7 | 0.295 6 | 33 |
100*6*5 | 0.201 5 | 0.114 2 | 80 | 0.256 5 | 0.307 2 | 20 | 0.224 0 | 0.134 3 | 75 | 0.309 0 | 0.269 3 | 25 |
100*7*5 | 0.208 5 | 0.114 9 | 76 | 0.345 1 | 0.360 2 | 24 | 0.258 0 | 0.153 9 | 80 | 0.292 5 | 0.365 2 | 20 |
100*8*5 | 0.226 3 | 0.127 6 | 77 | 0.315 0 | 0.296 6 | 23 | 0.204 9 | 0.146 3 | 72 | 0.285 3 | 0.282 7 | 28 |
Table 3
Wilcoxon signed rank test results of initial population quality
算例 | 工厂数为2 | 工厂数为3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SP | IGD | SP | IGD | |||||||||
P | Win | P | Win | P | Win | P | Win | P | Win | P | Win | |
20*6*4 | 0.114 | = | 0.017 | + | 0.005 | + | 0.959 | = | 0.005 | + | 0.005 | + |
20*7*4 | 0.203 | = | 0.009 | + | 0.005 | + | 0.285 | = | 0.013 | + | 0.005 | + |
20*8*4 | 0.139 | = | 0.007 | + | 0.005 | + | 0.333 | = | 0.005 | + | 0.005 | + |
20*6*5 | 0.203 | = | 0.009 | + | 0.008 | + | 0.241 | = | 0.007 | + | 0.005 | + |
20*7*5 | 0.028 | + | 0.005 | + | 0.005 | + | 0.203 | = | 0.005 | + | 0.005 | + |
20*8*5 | 0.333 | = | 0.005 | + | 0.005 | + | 0.575 | = | 0.017 | + | 0.012 | + |
50*6*4 | 0.445 | = | 0.139 | + | 0.008 | + | 0.799 | = | 0.009 | + | 0.005 | + |
50*7*4 | 0.445 | = | 0.028 | + | 0.007 | + | 0.203 | = | 0.005 | + | 0.014 | + |
50*8*4 | 0.721 | = | 0.009 | + | 0.005 | + | 0.333 | = | 0.007 | + | 0.005 | + |
50*6*5 | 0.445 | = | 0.005 | + | 0.008 | + | 0.721 | = | 0.007 | + | 0.005 | + |
50*7*5 | 0.878 | = | 0.007 | + | 0.005 | + | 0.241 | = | 0.009 | + | 0.007 | + |
50*8*5 | 0.114 | = | 0.028 | + | 0.016 | + | 0.009 | + | 0.008 | + | 0.005 | + |
100*6*4 | 0.445 | = | 0.059 | + | 0.013 | + | 0.575 | = | 0.005 | + | 0.013 | + |
100*7*4 | 0.575 | = | 0.007 | + | 0.005 | + | 0.241 | = | 0.017 | + | 0.008 | + |
100*8*4 | 0.169 | = | 0.037 | + | 0.007 | + | 0.959 | = | 0.022 | + | 0.007 | + |
100*6*5 | 0.074 | = | 0.005 | + | 0.005 | + | 0.047 | + | 0.059 | + | 0.005 | + |
100*7*5 | 0.037 | + | 0.005 | + | 0.009 | + | 0.799 | = | 0.005 | + | 0.005 | + |
100*8*5 | 0.285 | = | 0.007 | + | 0.008 | + | 0.241 | = | 0.022 | + | 0.013 | + |
Table 4
Experiment results comparisons of four algorithms (2 factories)
算例 | IHMGWO | MOGWO | NSGA-III | IMOGWO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SP | IGD | SP | IGD | SP | IGD | SP | IGD | |||||
20*6*4 | 0.115 9 | 0.052 4 | 90 | 0.225 5 | 0.270 9 | 1 | 0.263 0 | 0.221 0 | 6 | 0.177 8 | 0.171 3 | 3 |
20*7*4 | 0.160 4 | 0.081 7 | 90 | 0.186 7 | 0.310 4 | 4 | 0.388 8 | 0.242 9 | 1 | 0.150 9 | 0.215 8 | 5 |
20*8*4 | 0.114 1 | 0.048 7 | 87 | 0.198 0 | 0.323 5 | 6 | 0.206 0 | 0.174 0 | 4 | 0.199 8 | 0.146 8 | 3 |
20*6*5 | 0.088 9 | 0.017 2 | 86 | 0.163 4 | 0.187 7 | 3 | 0.179 3 | 0.172 5 | 4 | 0.231 3 | 0.249 4 | 7 |
20*7*5 | 0.204 3 | 0.078 5 | 85 | 0.153 8 | 0.197 7 | 5 | 0.409 5 | 0.224 8 | 3 | 0.189 6 | 0.168 3 | 7 |
20*8*5 | 0.135 8 | 0.040 0 | 90 | 0.131 3 | 0.206 1 | 3 | 0.212 8 | 0.199 8 | 2 | 0.137 9 | 0.189 1 | 5 |
50*6*4 | 0.117 5 | 0.058 3 | 80 | 0.171 1 | 0.281 5 | 10 | 0.218 7 | 0.226 9 | 8 | 0.203 0 | 0.211 0 | 2 |
50*7*4 | 0.108 6 | 0.056 7 | 82 | 0.185 9 | 0.216 0 | 2 | 0.147 1 | 0.200 8 | 9 | 0.509 8 | 0.305 6 | 7 |
50*8*4 | 0.132 3 | 0.089 0 | 73 | 0.182 0 | 0.259 4 | 5 | 0.349 3 | 0.184 8 | 20 | 0.141 2 | 0.226 2 | 2 |
50*6*5 | 0.191 6 | 0.116 0 | 74 | 0.211 7 | 0.332 6 | 4 | 0.241 5 | 0.267 2 | 5 | 0.263 4 | 0.227 1 | 17 |
50*7*5 | 0.239 6 | 0.178 1 | 77 | 0.255 5 | 0.428 1 | 8 | 0.309 4 | 0.256 6 | 6 | 0.302 4 | 0.400 5 | 9 |
50*8*5 | 0.131 1 | 0.084 7 | 79 | 0.198 7 | 0.253 6 | 7 | 0.253 2 | 0.169 7 | 12 | 0.156 4 | 0.202 7 | 2 |
100*6*4 | 0.225 1 | 0.133 6 | 82 | 0.206 9 | 0.262 2 | 9 | 0.221 1 | 0.326 7 | 3 | 0.227 3 | 0.296 4 | 6 |
100*7*4 | 0.139 9 | 0.122 7 | 75 | 0.179 7 | 0.306 6 | 7 | 0.410 6 | 0.234 8 | 13 | 0.136 1 | 0.268 4 | 5 |
100*8*4 | 0.076 7 | 0.173 0 | 74 | 0.180 5 | 0.262 8 | 15 | 0.201 9 | 0.312 0 | 6 | 0.233 6 | 0.221 8 | 5 |
100*6*5 | 0.133 6 | 0.131 4 | 75 | 0.174 9 | 0.274 8 | 15 | 0.183 5 | 0.191 7 | 8 | 0.205 5 | 0.224 5 | 2 |
100*7*5 | 0.161 6 | 0.079 2 | 77 | 0.172 2 | 0.340 1 | 10 | 0.428 1 | 0.237 2 | 12 | 0.269 3 | 0.250 9 | 1 |
100*8*5 | 0.103 4 | 0.006 7 | 94 | 0.143 6 | 0.237 6 | 3 | 0.201 5 | 0.173 8 | 3 | 0.135 0 | 0.235 8 | 0 |
Table 5
Experiment results comparisons of four algorithms (3 factories)
算例 | IHMGWO | MOGWO | NSGA-III | IMOGWO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SP | IGD | SP | IGD | SP | IGD | SP | IGD | |||||
20*6*4 | 0.122 6 | 0.035 6 | 94 | 0.155 9 | 0.198 6 | 0 | 0.252 7 | 0.196 9 | 3 | 0.200 9 | 0.163 6 | 3 |
20*7*4 | 0.091 3 | 0.006 5 | 98 | 0.170 6 | 0.210 0 | 1 | 0.178 4 | 0.206 5 | 1 | 0.136 6 | 0.151 4 | 0 |
20*8*4 | 0.084 1 | 0.074 1 | 95 | 0.121 8 | 0.174 2 | 0 | 0.216 9 | 0.194 6 | 3 | 0.156 7 | 0.157 7 | 2 |
20*6*5 | 0.084 4 | 0.080 2 | 92 | 0.183 4 | 0.200 5 | 2 | 0.277 9 | 0.201 0 | 2 | 0.189 5 | 0.181 6 | 4 |
20*7*5 | 0.102 7 | 0.057 5 | 86 | 0.144 7 | 0.218 7 | 1 | 0.310 1 | 0.238 0 | 6 | 0.181 5 | 0.155 0 | 7 |
20*8*5 | 0.095 5 | 0.057 5 | 93 | 0.155 6 | 0.223 7 | 1 | 0.227 7 | 0.176 8 | 4 | 0.141 8 | 0.189 6 | 2 |
50*6*4 | 0.122 1 | 0.143 7 | 82 | 0.237 0 | 0.267 1 | 4 | 0.289 9 | 0.201 6 | 7 | 0.138 6 | 0.188 3 | 6 |
50*7*4 | 0.118 0 | 0.017 7 | 87 | 0.125 1 | 0.254 5 | 5 | 0.216 9 | 0.179 4 | 7 | 0.247 6 | 0.263 4 | 1 |
50*8*4 | 0.336 7 | 0.222 9 | 63 | 0.277 5 | 0.471 6 | 7 | 0.163 8 | 0.477 4 | 23 | 0.559 3 | 0.241 7 | 7 |
50*6*5 | 0.103 4 | 0.053 9 | 77 | 0.318 6 | 0.184 7 | 7 | 0.165 8 | 0.227 3 | 10 | 0.131 6 | 0.167 1 | 6 |
50*7*5 | 0.116 2 | 0.099 1 | 71 | 0.178 0 | 0.211 5 | 10 | 0.212 7 | 0.168 8 | 12 | 0.175 5 | 0.217 7 | 7 |
50*8*5 | 0.169 0 | 0.115 7 | 62 | 0.296 8 | 0.320 9 | 7 | 0.341 9 | 0.197 1 | 14 | 0.310 4 | 0.393 6 | 17 |
100*6*4 | 0.171 1 | 0.116 3 | 78 | 0.191 9 | 0.190 9 | 6 | 0.289 1 | 0.189 7 | 14 | 0.119 2 | 0.370 0 | 2 |
100*7*4 | 0.193 7 | 0.090 6 | 83 | 0.200 1 | 0.272 8 | 7 | 0.239 4 | 0.204 0 | 5 | 0.211 6 | 0.197 8 | 5 |
100*8*4 | 0.214 8 | 0.109 0 | 77 | 0.253 8 | 0.215 1 | 10 | 0.235 3 | 0.186 4 | 6 | 0.151 3 | 0.122 9 | 7 |
100*6*5 | 0.196 9 | 0.091 8 | 89 | 0.174 1 | 0.307 2 | 7 | 0.360 6 | 0.245 5 | 2 | 0.196 6 | 0.262 7 | 2 |
100*7*5 | 0.118 9 | 0.073 7 | 74 | 0.144 9 | 0.195 5 | 5 | 0.316 8 | 0.181 9 | 20 | 0.177 0 | 0.167 8 | 1 |
100*8*5 | 0.099 6 | 0.107 3 | 82 | 0.206 3 | 0.210 1 | 6 | 0.203 5 | 0.231 0 | 8 | 0.302 2 | 0.226 1 | 4 |
Table 7
Pareto optimal solution set obtained by IHMGWO algorithm (part)
序号 | 调度方案 | ||||
---|---|---|---|---|---|
工厂1 | 工厂2 | ||||
1 | 14.5(19.6) | 17 956(0) | 687(807) | 15-16-17-11-7-19-3-6-8-1 | 14-13-10-18-20-2-5-4-9-12 |
2 | 14.1(20.0) | 18 039(0) | 687(807) | 15-16-17-11-7-19-3-6-8-1 | 14-13-10-18-4-20-5-2-9-12 |
3 | 14.4(19.7) | 17 393(0) | 697(821) | 11-17-6-7-8-1-16-3-15-19 | 4-10-20-18-9-12-14-5-2-13 |
4 | 14.3(20.6) | 19 372(0) | 664(850) | 17-1-3-7-16-6-19-15-8-11 | 5-4-10-9-14-12-2-18-13-20 |
5 | 16.0(19.8) | 17 325(0) | 719(856) | 15-3-17-11-6-8-1-19-16-7 | 9-18-20-14-12-10-5-4-2-13 |
6 | 15.0(18.9) | 17 389(0) | 701(839) | 8-15-1-3-17-6-16-11-7 | 12-2-19-4-18-5-20-13-9-14-10 |
7 | 14.1(20.6) | 17 565(0) | 696(833) | 17-8-7-11-3-1-15-6-16 | 12-18-19-9-13-14-2-10-20-5-4 |
8 | 14.6(21.2) | 18 143(0) | 671(859) | 17-11-7-3-6-16-8-1-15 | 13-12-18-19-2-14-5-10-9-20-4 |
9 | 15.3(20.3) | 17 588(0) | 680(863) | 11-17-6-7-1-3-8-15-16 | 14-4-10-2-9-18-19-13-5-20-12 |
10 | 14.0(19.8) | 17 620(0) | 682(861) | 8-17-1-11-7-15-6-16-3 | 13-10-18-5-4-19-2-9-12-14-20 |
1 | Fu Y P, Tian G D, Fathollahi-Fard A M, et al. Stochastic Multi-Objective Modelling and Optimization of an Energy-Conscious Distributed Permutation Flow Shop Scheduling Problem with the Total Tardiness Constraint[J]. Journal of Cleaner. Production (S0959-6526), 2019, 226: 515-525. |
2 | Branker K, Jeswiet J, Kim I Y. Greenhouse Gases Emitted in Manufacturing a Product-a New Economic Model[J]. Cirp Annals-Manufacturing Technology (S0007-8506), 2011, 60(1): 53-56. |
3 | Yu T S, Pinedo M. Flow Shops with Reentry: Reversibility Properties and Makespan Optimal Schedules[J]. European Journal of Operational Research (S0377-2217), 2020, 282(2): 478-490. |
4 | Zhang X Y, Chen L. A Re-entrant Hybrid Flow Shop Scheduling Problem with Machine Eligibility Constraints[J]. International Journal of Production Research (S0020-7543), 2018, 56(15/16): 5293-5305. |
5 | Lin C C, Liu W Y, Chen Y H.Considering Stockers in Reentrant Hybrid Flow Shop Scheduling with Limited Buffer Capacity[J].Computers & Industrial Engineering (S0360-8352), 2020, 139(1): 1-14. |
6 | 轩华, 李冰, 罗书敏, 等. 基于总加权完成时间的可重入混合流水车间调度问题[J]. 控制与决策, 2018, 33(12): 2218-2226. |
Xuan Hua, Li Bing, Luo Shumin, et al. Reentrant Hybrid Flowshop Scheduling Problem Based on Total Weighted Completion Time[J]. Control and Decision, 2018, 33(12): 2218-2226. | |
7 | Zhang G H, Xing K Y. Differential Evolution Metaheuristics for Distributed Limited-Buffer Flowshop Scheduling with Makespan Criterion[J]. Computers & Operations Research (S0305-0548), 2019, 108(8): 33-43. |
8 | Chen J F, Wang L, Peng Z P. A Collaborative Optimization Algorithm for Energy-Efficient Multi-Objective Distributed No-Idle Flow-Shop Scheduling[J]. Swarm and Evolutionary Computation (S2210-6502), 2019, 50: 100557. |
9 | Bargaoui H, Driss O B, Ghedira K. A novel Chemical Reaction Optimization for the Distributed Permutation Flowshop Scheduling Problem with Makespan Criterion[J]. Computers & Industrial Engineering (S0360-8352), 2017, 111: 239-250. |
10 | Marzouki B, Driss O B, Ghédira K. Solving Distributed and Flexible Job Shop Scheduling Problem Using a Chemical Reaction Optimization Metaheuristic[J]. Procedia Computer Science (S1877-0509), 2018, 126: 1424-1433. |
11 | Wu C H, Yao Y C, Dauzère-Pérès S, et al. Dynamic Dispatching and Preventive Maintenance for Parallel Machines with Dispatching-Dependent Deterioration[J]. Computers & Operations Research (S0305-0548), 2020, 113: 104779. |
12 | Khoukhi F E, Boukachour J, Alaoui A E H. The "Dual-Ants Colony": A Novel Hybrid Approach for the Flexible Job Shop Scheduling Problem with Preventive Maintenance[J]. Computers & Industrial Engineering (S0360-8352), 2017, 106: 236-255. |
13 | 吴秀丽, 张志强, 赵宁, 等. 超启发式文化基因算法优化生产与预维修集成调度问题[J]. 计算机集成制造系统, 2019, 25(8): 1885-1896. |
Wu Xiuli, Zhang Zhiqiang, Zhao Ning, et al. Production Scheduling and Preventive Maintenance Plan Optimization with Hyper-Heuristics Memetic Algorithm[J]. Computer Integrated Manufacturing Systems, 2019, 25(8): 1885-1896. | |
14 | Xiao L, Song S L, Chen X H, et al. Joint Optimization of Production Scheduling and Machine Group Preventive Maintenance[J]. Reliability Engineering & System Safety (S0951-8320), 2016, 14: 68-78. |
15 | Mirjalili S, Saremi S, Mirjalili S M, et al. Multi-Objective Grey Wolf Optimizer: A Novel Algorithm for Multi-Criterion Optimization[J]. Expert Systems with Applications (S0957-4174), 2016, 47: 106-119. |
16 | 董君, 叶春明. 区间数可重入混合流水车间调度与预维护协同优化[J]. 控制与决策, 2020, 36(11): 2599-2608. |
Dong Jun, Ye Chunming. Collaborative Optimization of Interval Number Reentrant Hybrid Flow Shop Scheduling and Preventive Maintenance[J]. Control and Decision, 2020, 36(11): 2599-2608. | |
17 | 邢怀玺, 吴华, 陈游, 等. 基于多目标灰狼算法的干扰资源多效能优化方法[J]. 北京航空航天大学学报, 2020,46(10): 1990-1998. |
Xing Huaixi, Wu Hua, Chen You, et al. Multi-Efficiency Optimization Method of Jamming Resources Based on Multi-Objective Grey Wolf Optimizer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1990-1998. | |
18 | 顾九春, 姜天华, 朱惠琦. 多目标离散灰狼优化算法求解作业车间节能调度问题[J]. 计算机集成制造系统, 2020, 27(8): 2295-2306. |
Gu Jiuchun, Jiang Tianhua, Zhu Huiqi. Energy-Saving Job Shop Scheduling Problem with Multi-Objective Discrete Grey Wolf Optimization Algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 27(8): 2295-2306. | |
19 | Luo S, Zhang L, Fan Y. Energy-Efficient Scheduling for Multi-Objective Flexible Job Shops with Variable Processing Speeds by Grey Wolf Optimization[J]. Journal of Cleaner Production (S0959-6526), 2019, 234: 1365-1384. |
20 | Ying K C, Lin S W, Wan S Y. Bi-Objective Reentrant Hybrid Flowshop Scheduling: An Iterated Pareto Greedy Algorithm[J]. International Journal of Production Research (S0020-7543), 2014, 52(19/20): 5735-5747. |
21 | Dong J, Ye C M. Research on Collaborative Optimization of Green Manufacturing in Semiconductor Wafer Distributed Heterogeneous Factory[J]. Applied Sciences-Basel (S2076-3417), 2019, 9(14): 2879-2902. |
22 | Deb K, Jain H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2014, 18(4): 577-601. |
23 | 姚远远, 叶春明, 杨枫. 双目标可重入混合流水车间调度问题的离散灰狼优化算法[J]. 运筹与管理, 2019, 28(8): 190-199. |
Yao Yuanyuan, Ye Chunming, Yang Feng. Solving Bi-Objective Reentrant Hybrid Flow Shop Scheduling Problems by a Hybrid Discrete Grey Wolf Optimizer[J]. Operations Research and Management Science, 2019, 28(8): 190-199. | |
24 | Zhou B H, Hu L M, Zhong Z Y. A Hybrid Differential Evolution Algorithm with Estimation of Distribution Algorithm for Reentrant Hybrid Flow Shop Scheduling Problem[J]. Neural Computing & Applications (S0941-0643), 2018, 30: 193-209. |
[1] | Fei Ye, Ziqing Li, Yuanjun Laili. Simulation Optimization on Joint Production and Preventive Maintenance Scheduling for Distributed Job-shop [J]. Journal of System Simulation, 2022, 34(4): 688-699. |
[2] | You Mingyi. Modeling Approach for Predictive Maintenance Scheduling Model Based on Variable Conversion [J]. Journal of System Simulation, 2017, 29(4): 847-852. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||