[1] Garey M R, Graham R L, Johnson D S.Some NP- complete geometric problems[C]// Proceedings of the eighth annual ACM symposium on Theory of computing. ACM, 1976: 10-22. [2] Chung C S, Flynn J, Kirca O.A branch and bound algorithm to minimize the total flow time for m-machine permutation flow shop problems[J]. International Journal of Production Economics (S0925-5273), 2002, 79(3): 185-196. [3] Framinan J M, Gupta J N D, leisten R. A review and classification of heuristics for permutation flow-shop scheduling with makespan objective[J]. Journal of the Operational Research Society (S0160-5682), 2004, 55(12): 1243-1255. [4] Lima C F, Pelikan M, Lobo F G, et al.Loopy sub-structural local search for the Bayesian optimization algorithm[C]// International Workshop on Engineering Stochastic Local Search Algorithms. Springer Berlin Heidel-berg, 2009: 61-75. [5] Ceberio J, Irurozki E, Mendiburu A, et al.A review on estimation of distribution algorithms in permutation based combinatorial optimization problems[J]. Progress in Artificial Intelligence (S2192-6352), 2012, 1(1): 103-117. [6] Liu H, Gao L, Pan Q.A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem[J]. Expert Systems with Applications (S0957-4174), 2011, 38(4): 4348-4360. [7] Tzeng Y R, Chen C L, Chen C L.A hybrid EDA with ACS for solving permutation flow shop scheduling[J]. The International Journal of Advanced Manufacturing Technology (S0268-3768), 2012, 60(9/12): 1139-1147. [8] Chang P C, Huang W H, Wu J L, et al.A block mining and re-combination enhanced genetic algorithm for the permutation flowshop scheduling problem[J]. International Journal of Production Economics (S0925-5273), 2013, 141(1): 45-55. [9] Chang P C, Chen M H.A block based estimation of distribution algorithm using bivariate model for scheduling problems[J]. Soft Computing (S1432-7643), 2014, 18(6): 1177-1188. [10] Ruiz R, Maroto C, Alcaraz J.Two new robust genetic algorithms for the flowshop scheduling problem[J]. Omega (S0305-0483), 2006, 34(5): 461-476. [11] Hsu C Y, Chang P C, Chen M H.A linkage mining in block-based evolutionary algorithm for permutation flowshop scheduling problem[J]. Computers & Industrial Engineering (S0360-8352), 2015, 83(C): 159-171. [12] Tizhoosh H R.Opposition-Based Learning: A New Scheme for Machine Intelligence[C]// CIMCA/ IAWTIC. 2005: 695-701. [13] McNicholas P D, Murphy T B, O’Regan M. Standardising the lift of an association rule[J]. Computational Statistics & Data Analysis(S0167-9473), 2008, 52(10): 4712-4721. [14] Nawaz M, Enscore E E, Ham I.A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega(S0305-0483), 1983, 11(1): 91-95. [15] 刘延风, 刘三阳. 基于混合电磁算法求解置换流水车间调度问题[J]. 系统仿真学报, 2012, 24(3): 603-607. Liu Yanfeng, Liu Sanyang.Hybrid Eletro-magnetism- based Algorithm for Permutation Flow Shop Scheduling[J]. Journal of System Simulatiom, 2012, 24(3): 603-607. [16] Chen Y M, Chen M C, Chang P C, et al.Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems[J]. Computers & Industrial Engineering (S0360-8352), 2012, 62(2): 536-545. [17] 张先超, 周泓. 变参数量子进化算法及其在求解置换流水车间调度问题中的应用[J]. 计算机集成制造系统, 2016, 22(3): 774-781. Zhang Xianchao, Zhou Hong.Variable paramenters quantum-inspired evolutionary algorithm and its application in permutation flow-shop scheduling problem[J]. Computer Integrated Manu- facturing Systems, 2016, 22(3): 774-781. [18] Lian Z, Gu X, Jiao B.A similar particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan[J]. Applied Mathematics and Computation (S0096-3003), 2006, 175(1): 773-785. [19] Chang P C, Huang W H, Ting C J.A hybrid genetic-immune algorithm with improved lifespan and elite antigen for flow-shop scheduling problems[J]. International Journal of Production Research (S0020-7543), 2011, 49(17): 5207-5230. |