[1] Peng S, Zhou Y, Cao L, et al.Influence Analysis in Social Networks: A Survey[J]. Journal of Network and Computer Applications (S1084-8045), 2018, 106(3): 17-32. [2] Wang Y, Fan Q, Li Y, et al.Real-time Influence Maximization on Dynamic Social Streams[J]. Proceedings of the VLDB Endowment(S2150-8097), 2017, 10(7): 805-816. [3] Li Y, Zhang D, Tan K L.Real-time Targeted Influence Maximization for Online Advertisements[J]. Proceedings of the VLDB Endowment (S2150-8097), 2015, 8(10): 1070-1081. [4] Nguyen H T, Dinh T N, Thai M T.Cost-aware Targeted Viral Marketing in Billion-scale Networks[C]// IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. San Francisco, CA, USA: IEEE, 2016: 1-9. [5] Li Y, Fan J, Zhang D, et al.Discovering Your Selling Points: Personalized Social Influential Tags Exploration[C]// 2017 ACM International Conference on Management of Data. Chicago, IL, USA: ACM, 2017: 619-634. [6] Chen S, Fan J, Li G, et al.Online Topic-aware Influence Maximization[J]. Proceedings of the VLDB Endowment (S2150-8097), 2015, 8(6): 666-677. [7] Chen X, Song G, He X, et al.On Influential Nodes Tracking in Dynamic Social Networks[C]// 2015 SIAM International Conference on Data Mining. Vancouver, BC, Canada: SIAM, 2015: 613-621. [8] Ohsaka N, Akiba T, Yoshida Y, et al.Dynamic Influence Analysis in Evolving Networks[J]. Proceedings of the VLDB Endowment (S2150-8097), 2016, 9(12): 1077-1088. [9] Tang Y, Shi Y, Xiao X.Influence Maximization in Near-linear Time: A martingale Approach[C]// 2015 ACM SIGMOD International Conference on Management of Data. New York, NY, USA: ACM, 2015: 1539-1554. [10] Ohsaka N, Yamaguchi Y, Kakimura N, et al.Maximizing Time-decaying Influence in Social Networks[C]// Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016. Riva del Garda, Italy,: Springer, Cham, 2016: 132-147. [11] Gomez-Rodriguez M, Song L, Du N, et al.Influence Estimation and Maximization in Continuous-time Diffusion Networks[J]. ACM Transactions on Information Systems (TOIS)(S1046-8188), 2016, 34(2): 9. [12] Xie M, Yang Q, Wang Q, et al.Dynadiffuse: A Dynamic Diffusion Model for Continuous Time Constrained Influence Maximization[C]// Twenty- Ninth AAAI Conference on Artificial Intelligence. Austin, Texas USA: AAAI Press, 2015. [13] Wang B, Chen G, Fu L, et al.Drimux: Dynamic Rumor Influence Minimization with User Experience in Social Networks[J]. IEEE Transactions on Knowledge and Data Engineering (S1041-4347), 2017, 29(10): 2168-2181. [14] Yao Q, Shi R, Zhou C, et al.Topic-aware Social Influence Minimization[C]// 24th International Conference on World Wide Web. Florence, Italy: ACM, 2015: 139-140. [15] Liu Y, Han Z, Shi S, et al.SA-Min: An Efficient Algorithm for Minimizing the Spread of Influence in a Social Network[C]// Wireless Sensor Networks. CWSN 2017. Tianjin, China: Springer, Singapore, 2017: 333-343. [16] Yao Q, Zhou C, Xiang L, et al.Minimizing the Negative Influence by Blocking Links in Social Networks[C]// International Conference on Trustworthy Computing and Services. Berlin, Heidelberg: Springer, 2014: 65-73. [17] Zhang Y, Zhang Y.Top-K Influential Nodes in Social Networks: A Game Perspective[C]// 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2017: 1029-1032. [18] Irfan M T, Ortiz L E.A Game-Theoretic Approach to Influence in Networks[C]// Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011. [19] Rossi R, Ahmed N.The Network Data Repository with Interactive Graph Analytics and Visualization[C]// Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, Texas USA: AAAI Press, 2015. |