[1] 王大武, 白定群, 邵岚. 下肢康复机器人训练对脑卒中偏瘫侧膝关节本体感觉的影响[J]. 中国康复医学杂志, 2016, 31(9): 950-954. Wang Dawu, Bai Dingqun, Shao Lan.Effects of robotic-assisted gait training on proprioception of hemiparetic knee in patients after stroke[J]. Chinese Journal of Rehabilitation Mecicine, 2016, 31(9): 950-954. [2] Macko R F, Ivey F M, Forrester L W.Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke. A randomized, controlled trial[J]. Stroke (S0039-2499), 2005, 36(10): 2206-2211. [3] 林海丹, 张韬, 陈青, 等. 康复机器人辅助步行训练对不完全性脊髓损伤患者步行能力的影响[J]. 自动化学报, 2016, 42(12): 1832-1838. Lin Haidan, Zhang Tao, Chen Qing, et al.Effect of Robot-assisted Gait Training on Walking Ability in Patients with Incomplete Spinal Cord Injury[J]. Acta Automatica Sinica, 2016, 42(12): 1832-1838. [4] Mam Ki Yeun, Kim Hyun Jung, Kwon Bum Sun, et al.Robot-assisted gait training (LOKOMAT) improves walking function and activity in people with spinal cord injury: a systematic review[J]. Journal of Neuroengineering and Rehabilitation (S1743-0003), 2017, 14(1): 1-13. [5] Taheri H, Reinkensmeyer D J, David J, et al.Model-based assistance-as-needed for robotic movement therapy after stroke[J]. IEEE Engineering in Medicine and Biology Society (S1557-170X), 2016: 2124-2127. [6] Pohl M, Mehrholz J, Ritschel C, et al.Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: A randomized controlled trial[J]. Stroke (S0039-2499), 2002, 33(2): 553-558. [7] Hesse S, Schmidt H, Werner C, et al.Upper and Lower extremity robotic devices for rehabilitation and for studying motor control[J]. Current Opinion Neurol (S1350-7540), 2003, 16(6): 705-710. [8] Reinkensmeyer D J, Burdet E, Casadio M.Computational neurorehabilitation: modeling plasticity and learning to predict recovery[J]. Journal of Neuroengineering and Rehabilitation (S1743-0003), 2016, 13(1): 1-25. [9] Yang Y, Ma L, Huang D Q.Development and Repetitive Learning Control of Lower Limb Exoskeleton Driven by Electrohydraulic Actuators[J]. IEEE Transactions on Industrial Electronoics (S0278-0046), 2017, 64(5): 4169-4178. [10] Koopman B, Asseldonk E H F V, Kooij H V D. Estimation of Human Hip and Knee Multi-Joint Dynamics Using the LOPES Gait Trainer[J]. IEEE Transactions on Robotics (S1552-3098), 2016, 32(4): 920-932. [11] Stegall P, Zanotto D, Agrawal S K.Variable Damping Force Tunnel for Gait Training Using ALEXIII[J]. IEEE Robotics and Automation Letters (S2377-3766), 2017, 2(3): 1495-1501. [12] Meng W, Liu Q, Zhou Z D, et al.Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation[J]. Mechatronics (S0957-4158), 2015, 31(10): 132-145. [13] 曹福成, 邢笑雪, 李元春, 等. 下肢康复机器人轨迹自适应滑模阻抗控制[J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608. Cao Fucheng, Xing Xiaoxue, Li Yuanchun, et al.Adaptive trajectory sliding mode impedance control for lower limb rehabilitation robot[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5): 1602-1608. [14] Long Y, Du Z J, Cong L, et al.Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton[J]. ISA Transactions (S0019-0578), 2017, 67(5): 389-397. [15] Jaffe D L, Brown D A, Pierson-Carey C D, et al. Stepping over obstacles to improve walking in individuals with poststroke hemiplegia[J]. Journal of Rehabilitation Research and Development (S0748-7711), 2004, 41(3A): 283-292. [16] Aravind G, Darekar A, Fung J.Virtual Reality-Based Navigation Task to Reveal Obstacle Avoidance Performance in Individuals with Visuospatial Neglect[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering (S1534-4320), 2015, 23(2): 179-188. [17] Minetti A E, Boldri L, Brusamolin L.A feedback- controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans[J]. Journal of Applied Physiology (S8750-7587), 2003, 95(2): 838-843. [18] Lichtenstein L, Barabas J, Peli E.A feedback control instrument for treadmill locomotion in virtual environments[J]. ACM Transactions on Applied Perception (S1544-3558), 2007, 4(1): 1-22. [19] Park H J, Lee H J, Kang T H, et al.Study on automatic speed adaptation treadmills[C]. 2015 15th International Conference on Control, Automation and System, Busan, Korea, Oct. 13-16, 2015: 1898-1900. [20] Yoon J, Manurung A, Kim G.Impedance Control of a Small Treadmill with Sonar Sensors for Automatic Speed Adaptation[J]. International Journal of Control, Automation and Systems (S1598-6446), 2014, 12(6): 1323-1335. [21] Susko T, Swaminathan K, Krebs H.MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering (S1534-4320), 2016, 24(10): 1089-1099. [22] Nguyen H G, Hoang A D, Nguyen V S.Fuzzy-based Treadmill Speed Control for Lower Extremity Rehabilitation of Patient after Stroke[C]. 2016 International Conference on Advanced Technologies for Communications, Hanoi, Vietnam, Oct. 12-14, 2016: 307-311. [23] Von Zitzewitz J, Bernhardt M, Riener R.A novel methods for automatic treadmill speed adaptation[J]. IEEE Transactions on Neural System & Rehabilitation Engineering (S1534-4320), 2007, 15(3): 401-409. [24] Christensen R, Hollerbach J, Xu Y, et al.Inertial force feedback for the treadport locomotion interface[J]. Presence Teleoperators and Virtual Environments (S1054-7460), 2000, 9(1): 1-14. [25] Koenig A, Binder C, von Zitzewitz J, et al. Voluntary gait speed adaptation for robot-assisted treadmill training[C]. 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, June 23-26, 2009: 419-424. [26] Cha M, Han S, Kim H, et al.User-driven treadmill using walking speed estimated from plantar pressure sensor[J]. Electronics Letters (S0013-5194), 2017, 53(8): 524-526. [27] 张书涛. 基于功能评估的步态运动测量与特征提取 [D]. 上海: 上海大学, 2016. Zhang Shutao.Study on the Measurement and Feature Extraction of Gait Kinematics for Functional Evaluation [D]. Shanghai: Shanghai University, 2016. [28] Wu J W, Shen L Y, Zhang Y N, et al.A Treadmill Speed Adaptive Control Method for Lower Limb Rehabilitation Robot[J]. Advanced Materials Research (S1022-6680), 2013, 657: 1158-1163. [29] Lichtenstein L, Barabas J, Woods R L, et al.A feedback control instrument for treadmill locomotion in virtual environments[J]. ACM Transactions on Applied Perception (S1544-3558), 2007, 4(1): 1-22. [30] De Luca A, Mattone R, Giordano P R, et al.Bulthoff. Control Design of the 2D CyberWalk platform[C]. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, Oct. 10-15, 2009: 5051-5058. [31] Souman J L, Giordano P R, Frissen I, et al.Making virtual reality real: perceptual evaluation of a new treadmill control algorithm[J]. ACM Transactions on Applied Perception (S1544-3558), 2010, 7(2): 1-14. [32] 宋志安, 王文馨. 由阶跃响应曲线辨识传递函数的图解方法[J]. 山东科技大学学报(自然科学版), 2003, 22(1): 61-63. Song Zhian, Wang Wenxin.Diagrammatic Method of Transfer Function Idenlified by Step-up Response Curves[J]. Journal of Shandong University of Science and Technology (Natural Science), 2003, 22(1): 61-63. [33] 陈希孺, 王松桂. 线性模型中最小二乘法[M]. 上海: 上海科学技术出版社, 2003. Chen Xiru, Wang Songgui.Least squares method in linear model[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2003. [34] Wu Z Z, Ben A F.Adaptive regulation in bimodal linear systems[J]. International Journal of Robust and Nonlinear Control (S1049-8923), 2010, 20(1): 59-83. [35] Wu Z Z, Huang M S, Lei J T, et al.Youla-Kuceral parameterized adaptive tracking control for optical data storage systems[J]. Journal of Vibroengineering (S1392-8716), 2015, 17(3): 1351-1362. |