系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2812-2825.doi: 10.16182/j.issn1004731x.joss.25-0334
• 论文 • 上一篇
唐金琳1, 王艳1, 刘相1, 王团结2, 纪志成1
收稿日期:2025-04-22
修回日期:2025-06-25
出版日期:2025-11-18
发布日期:2025-11-27
通讯作者:
王艳
第一作者简介:唐金琳(2000-),女,硕士生,研究方向为布尔网络推理与建模。
基金资助:Tang Jinlin1, Wang Yan1, Liu Xiang1, Wang Tuanjie2, Ji Zhicheng1
Received:2025-04-22
Revised:2025-06-25
Online:2025-11-18
Published:2025-11-27
Contact:
Wang Yan
摘要:
针对大规模布尔网络推理中节点关系复杂、现有算法精度不足的问题,提出一种结合长短期记忆(long short-term memory, LSTM)网络与遗传规划的新型优化算法。采用基于自注意力机制(self-attention)的增强LSTM网络,从时间序列数据中挖掘潜在调控节点;以这些节点作为语法树(syntax tree, ST)的终端设计遗传规划算法,并引入新运算符优化布尔函数搜索。实验表明:该方法在推理精度上显著优于现有算法。布尔网络模型优化算法为复杂网络动态行为的建模与仿真提供了有效工具。
中图分类号:
唐金琳,王艳,刘相等 . 基于神经网络-遗传规划的布尔网络模型优化[J]. 系统仿真学报, 2025, 37(11): 2812-2825.
Tang Jinlin,Wang Yan,Liu Xiang,et al . Boolean Network Model Optimization Based on Neural Network and Genetic Programming[J]. Journal of System Simulation, 2025, 37(11): 2812-2825.
表1
算法在1%、5%噪声下的基因调控网络推断结果
| 布尔网络 | 算法 | 噪声1% | 噪声5% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 召回率 | 精度 | 假阳性率 | F1值 | 召回率 | 精度 | 假阳性率 | F1值 | ||
| Protein | ATEN | 0.853±0.010 | 0.851±0.011 | 0.063±0.005 | 0.852±0.009 | 0.888±0.013 | 0.782±0.012 | 0.092±0.006 | 0.832±0.012 |
| MIBNI | 1.000 | 0.444 | 0.375 | 0.615 | 1.000 | 0.444 | 0.375 | 0.615 | |
| Best-Fit | 0.875 | 0.875 | 0.037 | 0.875 | 1.000 | 0.727 | 0.107 | 0.842 | |
| NNBNI | 1.000 | 0.800 | 0.071 | 0.889 | 1.000 | 0.615 | 0.179 | 0.762 | |
| NNGSP | 1.000 | 1.000 | 0 | 1.000 | 0.750±0 | 1.000 | 0 | 0.857±0.073 | |
| cAMP | ATEN | 0.909±0.012 | 0.714±0.003 | 0.075±0.001 | 0.800±0.004 | 0.727±0.021 | 0.571±0.016 | 0.113±0.001 | 0.640±0.011 |
| MIBNI | 0.909 | 0.417 | 0.264 | 0.571 | 0.818 | 0.375 | 0.283 | 0.514 | |
| Best-Fit | 0.728 | 0.571 | 0.113 | 0.640 | 0.909 | 0.476 | 0.208 | 0.625 | |
| NNBNI | 0.909 | 0.667 | 0.200 | 0.769 | 0.909 | 0.476 | 0.207 | 0.624 | |
| NNGSP | 0.873±0.036 | 0.960±0.060 | 0.008±0.002 | 0.914±0.038 | 1.000±0 | 0.890±0.078 | 0.026±0.012 | 0.941±0.024 | |
| Th-Cell | ATEN | 0.955±0.009 | 0.750±0.008 | 0.057±0.002 | 0.840±0.010 | 0.864±0.009 | 0.655±0.012 | 0.082±0.003 | 0.754±0.011 |
| MIBNI | 0.636 | 0.389 | 0.180 | 0.483 | 0.591 | 0.361 | 0.189 | 0.448 | |
| Best-Fit | 1.000 | 0.786 | 0.049 | 0.880 | 0.909 | 0.606 | 0.106 | 0.727 | |
| NNBNI | 0.909 | 0.476 | 0.207 | 0.626 | 0.818 | 0.419 | 0.205 | 0.554 | |
| NNGSP | 0.950±0.040 | 0.976±0.024 | 0.004±0.004 | 0.963±0.033 | 0.855±0.045 | 0.990±0.040 | 0.002±0.002 | 0.917±0.035 | |
| T-LGL | ATEN | 0.885±0.007 | 0.575±0.010 | 0.057±0.003 | 0.697±0.009 | 0.845±0.014 | 0.564±0.011 | 0.057±0.007 | 0.677±0.013 |
| MIBNI | 0.808 | 0.292 | 0.171 | 0.429 | 0.769 | 0.278 | 0.175 | 0.408 | |
| Best-Fit | 0.961 | 0.510 | 0.081 | 0.666 | 0.883 | 0.434 | 0.101 | 0.582 | |
| NNBNI | 0.808 | 0.488 | 0.074 | 0.609 | 0.730 | 0.432 | 0.084 | 0.543 | |
| NNGSP | 0.881±0.042 | 0.935±0.0183 | 0.006±0.001 | 0.907±0.034 | 0.708±0.0612 | 0.761±0.079 | 0.019±0.005 | 0.733±0.067 | |
表2
算法在10%噪声下的基因调控网络推断结果
| 布尔网络 | 算法 | 召回率 | 精度 | 假阳性率 | F1值 |
|---|---|---|---|---|---|
| Protein | ATEN | 0.875±0.016 | 0.636±0.014 | 0.143±0.008 | 0.737±0.023 |
| MIBNI | 0.750 | 0.353 | 0.393 | 0.48 | |
| Best-Fit | 1.000 | 0.444 | 0.357 | 0.615 | |
| NNBNI | 1.000 | 0.571 | 0.214 | 0.727 | |
| NNGSP | 0.750±0 | 1.000 | 0 | 0.857+0.073 | |
| cAMP | ATEN | 0.818±0.024 | 0.45±0.033 | 0.208±0.009 | 0.581±0.018 |
| MIBNI | 0.727 | 0.348 | 0.283 | 0.470 | |
| Best-Fit | 0.818 | 0.391 | 0.264 | 0.529 | |
| NNBNI | 0.818 | 0.409 | 0.213 | 0.545 | |
| NNGSP | 1.000±0 | 0.733±0.080 | 0.076±0.016 | 0.846±0.033 | |
| Th-cell | ATEN | 0.682±0.018 | 0.600±0.020 | 0.082±0.005 | 0.638±0.019 |
| MIBNI | 0.500 | 0.344 | 0.172 | 0.407 | |
| Best-Fit | 0.591 | 0.394 | 0.164 | 0.473 | |
| NNBNI | 0.682 | 0.288 | 0.303 | 0.405 | |
| NNGSP | 0.682±0.046 | 0.652±0.061 | 0.066±0.008 | 0.667+0.076 | |
| T-LGL | ATEN | 0.615±0.023 | 0.340±0.018 | 0.104±0.012 | 0.438±0.022 |
| MIBNI | 0.462 | 0.245 | 0.124 | 0.320 | |
| Best-Fit | 0.346 | 0.188 | 0.131 | 0.243 | |
| NNBNI | 0.538 | 0.311 | 0.113 | 0.393 | |
| NNGSP | 0.577±0.077 | 0.600±0.069 | 0.034±0.016 | 0.588+0.106 |
| [1] | Kauffman S A. Metabolic Stability and Epigenesis in Randomly Constructed Genetic nets[J]. Journal of Theoretical Biology, 1969, 22(3): 437-467. |
| [2] | 李志强, 宋金利, 杨剑. 概率布尔网络重构[J]. 中国科学(信息科学), 2018, 48(9): 1214-1226. |
| Li Zhiqiang, Song Jinli, Yang Jian. Reconstruction of Probabilistic Boolean Networks[J]. Scientia Sinica(Informationis), 2018, 48(9): 1214-1226. | |
| [3] | 蒋梦涵, 李海涛. 基于牵制控制的切换布尔网络的分布式集合镇定[J]. 控制理论与应用, 2021, 38(11): 1754-1760. |
| Jiang Menghan, Li Haitao. Distributed Set Stabilization of Switched Boolean Networks Via Pinning Control[J]. Control Theory & Applications, 2021, 38(11): 1754-1760. | |
| [4] | 刘洋, 刘泽娇, 卢剑权. 状态翻转控制下布尔控制网络的可镇定性和Q学习算法[J]. 控制理论与应用, 2021, 38(11): 1743-1753. |
| Liu Yang, Liu Zejiao, Lu Jianquan. State-flipped Control and Q-learning Algorithm for the Stabilization of Boolean Control Networks[J]. Control Theory & Applications, 2021, 38(11): 1743-1753. | |
| [5] | Borriello E, Daniels B C. The Basis of Easy Controllability in Boolean Networks[J]. Nature Communications, 2021, 12(1): 5227. |
| [6] | Li Lingyu, Sun Liangjie, Chen Guangyi, et al. LogBTF: Gene Regulatory Network Inference Using Boolean Threshold Network Model from Single-cell Gene Expression Data[J]. Bioinformatics, 2023, 39(5): btad256. |
| [7] | Barman Shohag, Kwon Yung-Keun. A Novel Mutual Information-based Boolean Network Inference Method from Time-series Gene Expression Data[J]. PLoS One, 2017, 12(2): e0171097. |
| [8] | Lähdesmäki Harri, Shmulevich I, Yli-Harja Olli. On Learning Gene Regulatory Networks Under the Boolean Network Model[J]. Machine Learning, 2003, 52(1): 147-167. |
| [9] | Shi Ning, Zhu Zexuan, Tang Ke, et al. ATEN: And/Or Tree Ensemble for Inferring Accurate Boolean Network Topology and Dynamics[J]. Bioinformatics, 2020, 36(2): 578-585. |
| [10] | Zhang Dezhen, Gao Shuhua, Liu Zhiping, et al. LogicGep: Boolean Networks Inference Using Symbolic Regression from Time-series Transcriptomic Profiling Data[J]. Briefings in Bioinformatics, 2024, 25(4): bbae286. |
| [11] | Nguyen H, Tran D, Tran B, et al. A Comprehensive Survey of Regulatory Network Inference Methods Using Single Cell RNA Sequencing Data[J]. Briefings in Bioinformatics, 2021, 22(3): bbaa190. |
| [12] | Pušnik Žiga, Mraz Miha, Zimic Nikolaj, et al. Review and Assessment of Boolean Approaches for Inference of Gene Regulatory Networks[J]. Heliyon, 2022, 8(8): e10222. |
| [13] | 沈嘉玮, 才大业, 杨国青, 等. 大规模脉冲神经网络动态加载仿真方法[J]. 系统仿真学报, 2025, 37(2): 541-550. |
| Shen Jiawei, Cai Daye, Yang Guoqing, et al. Dynamic Loading Simulation Method for Large-scale Spiking Neural Network[J]. Journal of System Simulation, 2025, 37(2): 541-550. | |
| [14] | 李静, 张涛涛, 金凯, 等. 基于时变RBF神经网络的时变非线性系统控制器设计[J]. 系统仿真学报, 2023, 35(10): 2223-2236. |
| Li Jing, Zhang Taotao, Jin Kai, et al. Time-varying RBF Neural Network-based Controller Design for a Class of Time-varying Nonlinear Systems[J]. Journal of System Simulation, 2023, 35(10): 2223-2236. | |
| [15] | 张少强, 潘镜伊. 基于单细胞RNA测序数据的基因调控网络推断算法综述[J]. 天津师范大学学报(自然科学版), 2024, 44(1): 1-12. |
| Zhang Shaoqiang, Pan Jingyi. Review of Gene Regulatory Network Inference Algorithms Based on Single-cell RNA Sequencing Data[J]. Journal of Tianjin Normal University(Natural Science Edition), 2024, 44(1): 1-12. | |
| [16] | 鲍艳春, 石彩霞, 张传强, 等. 深度学习在基因组学中的研究进展[J]. 遗传, 2024, 46(9): 701-715. |
| Bao Yanchun, Shi Caixia, Zhang Chuanqiang, et al. Progress on Deep Learning in Genomics[J]. Hereditas, 2024, 46(9): 701-715. | |
| [17] | Hassan Ismail Fawaz, Forestier Germain, Weber Jonathan, et al. Deep Learning for Time Series Classification: A Review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. |
| [18] | Wen Qingsong, Zhou Tian, Zhang Chaoli, et al. Transformers in Time Series: A Survey[EB/OL]. (2022-02-15) [2025-03-09]. . |
| [19] | Zheng Yi, Liu Qi, Chen Enhong, et al. Time Series Classification Using Multi-channels Deep Convolutional Neural Networks[C]//Web-Age Information Management. Cham: Springer International Publishing, 2014: 298-310. |
| [20] | Lecun Y, Bottou L, Bengio Y, et al. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
| [21] | Yuan Ye, Bar-Joseph Z. Deep Learning for Inferring Gene Relationships from Single-cell Expression Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 27151-27158. |
| [22] | Zampieri G, Vijayakumar S, Yaneske E, et al. Machine and Deep Learning Meet Genome-scale Metabolic Modeling[J]. PLoS Computational Biology, 2019, 15(7): e1007084. |
| [23] | Mahendran Nivedhitha, Durai Raj Vincent P M. A Deep Learning Framework with an Embedded-based Feature Selection Approach for the Early Detection of the Alzheimer's Disease[J]. Computers in Biology and Medicine, 2022, 141: 105056. |
| [24] | Hochreiter Sepp, Schmidhuber Jürgen. Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
| [25] | Gyamfi K S, Brusey J, Gaura E. Differential Radial Basis Function Network for Sequence Modelling[J]. Expert Systems With Applications, 2022, 189: 115982. |
| [26] | Duan Haoshan, Meng Xi, Tang Jian, et al. Time-series Prediction Using a Regularized Self-organizing Long Short-term Memory Neural Network[J]. Applied Soft Computing, 2023, 145: 110553. |
| [27] | Al-Ajeli Ahmed, Alshamery Eman S. A Multi-output Deep Learning Model for Fault Diagnosis Based on Time-series Data[J]. International Journal of Prognostics and Health Management, 2024, 15(1): 1-10. |
| [28] | Huang Zhixin, Lin Jiaxiang, Lin Lizheng, et al. A Sensitive LSTM Model for High Accuracy Zero-inflated Time-series Prediction[J]. IEEE Access, 2024, 12: 171527-171539. |
| [29] | Wang Yongjian, Qian Cheng, Qin Si. Attention-mechanism Based DiPLS-LSTM and Its Application in Industrial Process Time Series Big Data Prediction[J]. Computers & Chemical Engineering, 2023, 176: 108296. |
| [30] | Wen Xianyun, Li Weibang. Time Series Prediction Based on LSTM-attention-LSTM Model[J]. IEEE Access, 2023, 11: 48322-48331. |
| [31] | Barman Shohag, Kwon Yung-Keun. A Boolean Network Inference from Time-series Gene Expression Data Using a Genetic Algorithm[J]. Bioinformatics, 2018, 34(17): i927-i933. |
| [32] | Barman Shohag, Kwon Yung-Keun. A Neuro-evolution Approach to Infer a Boolean Network from Time-series Gene Expressions[J]. Bioinformatics, 2020, 36(S2): i762-i769. |
| [33] | Liu Xiang, Wang Yan, Liu Shan, et al. MIFuGP: Boolean Network Inference from Multivariate Time Series Using Fuzzy Genetic Programming[J]. Information Sciences, 2024, 680: 121129. |
| [34] | Mei Yi, Chen Qi, Lensen Andrew, et al. Explainable Artificial Intelligence by Genetic Programming: A Survey[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 621-641. |
| [35] | 邱俊杰, 郑红, 程云辉. 基于多尺度LSTM预测模型研究[J]. 系统仿真学报, 2022, 34(7): 1593-1604. |
| Qiu Junjie, Zheng Hong, Cheng Yunhui. Research on Prediction of Model Based on Multi-scale LSTM[J]. Journal of System Simulation, 2022, 34(7): 1593-1604. | |
| [36] | Bahdanau Dzmitry, Cho Kyunghyun, Bengio Yoshua. Neural Machine Translation by Jointly Learning to Align and Translate[EB/OL]. (2014-09-01) [2025-03-12]. . |
| [37] | Zhang Yang, Liu Caiqi, Liu Mu jiein, et al. Attention Is All You Need: Utilizing Attention in AI-enabled Drug Discovery[J]. Briefings in Bioinformatics, 2024, 25(1): bbad467. |
| [38] | 马仑, 杨跃, 王迨贺, 等. 联合自注意力机制与权值共享的人体行为识别模型[J]. 系统仿真学报, 2025, 37(9): 2409-2419. |
| Ma Lun, Yang Yue, Wang Daihe, et al. A Model Combining Self-attention and Weight Sharing for Human Activity Recognition[J]. Journal of System Simulation, 2025, 37(9): 2409-2419. | |
| [39] | Xie Huayang, Zhang Mengjie. Impacts of Sampling Strategies in Tournament Selection for Genetic Programming[J]. Soft Computing, 2012, 16(4): 615-633. |
| [40] | Müssel Christoph, Hopfensitz Martin, Kestler Hans A. BoolNet-an R Package for Generation, Reconstruction and Analysis of Boolean Networks[J]. Bioinformatics, 2010, 26(10): 1378-1380. |
| [1] | 马仑, 杨跃, 王迨贺, 廖桂生, 李幸. 联合自注意力机制与权值共享的人体行为识别模型[J]. 系统仿真学报, 2025, 37(9): 2409-2419. |
| [2] | 纪志成, 全震, 王艳. 基于混合决策机制的自适应生产调度优化与仿真[J]. 系统仿真学报, 2025, 37(7): 1791-1803. |
| [3] | 万宇航, 朱子璐, 钟春富, 刘永奎, 林廷宇, 张霖. 基于改进PPO算法的机械臂动态路径规划[J]. 系统仿真学报, 2025, 37(6): 1462-1473. |
| [4] | 陈坤, 陈亮, 谢济铭, 刘丰博, 陈泰熊, 位路宽. 基于LSTM-GNN的畸形交叉口自适应信号控制仿真研究[J]. 系统仿真学报, 2025, 37(6): 1343-1351. |
| [5] | 卢新彪, 叶春林, 陈艺森, 吴文, 陈钰丹. 一种基于迁移学习的PM2.5浓度预测混合模型[J]. 系统仿真学报, 2025, 37(4): 882-894. |
| [6] | 李想, 任晓羽, 周永兵, 张剑. 基于改进D3QN算法的随机工时下柔性综合调度问题研究[J]. 系统仿真学报, 2025, 37(2): 474-486. |
| [7] | 徐忠锴, 刘艳玲, 盛晓娟, 汪超, 柯文俊. 基于改进YOLOv5的变电站典型缺陷自动检测算法[J]. 系统仿真学报, 2024, 36(11): 2604-2615. |
| [8] | 何必胜, 张宏翔, 朱永俊, 鲁工圆. 基于车站仿真和LSTM的轨道交通换乘站动态性能评估方法[J]. 系统仿真学报, 2023, 35(3): 544-556. |
| [9] | 张天瑞, 刘玉亭, 王译可. 基于改进BiLSTM的多工序产品质量预测研究[J]. 系统仿真学报, 2023, 35(11): 2321-2332. |
| [10] | 戢晓峰, 戈艺澄. 基于深度学习的节假日高速公路交通流预测方法[J]. 系统仿真学报, 2020, 32(6): 1164-1171. |
| [11] | 张苏雨, 王艳, 纪志成. 基于超启发式遗传规划的动态车间调度方法[J]. 系统仿真学报, 2020, 32(12): 2494-2506. |
| [12] | 刘培贞, 贾玉祥, 夏时洪. 一种面向电力运维作业的LSTM动作识别方法[J]. 系统仿真学报, 2019, 31(12): 2837-2844. |
| [13] | 李博皓, 吴云洁. 弹载雷达成像制导路径规划的LSTM模型研究[J]. 系统仿真学报, 2019, 31(12): 2696-2701. |
| [14] | 孟小凡, 宋华. 基于神经网络的卫星姿控系统故障预测[J]. 系统仿真学报, 2019, 31(11): 2499-2508. |
| [15] | 张威威, 李瑞敏, 谢中教. 基于深度学习的城市道路旅行时间预测[J]. 系统仿真学报, 2017, 29(10): 2309-2316. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||