系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2016-2029.doi: 10.16182/j.issn1004731x.joss.0124-0243

• 论文 • 上一篇    

动态需求情形下多行程多交货期的成品油配送优化

谢勇1, 高海龙1, 陈于涛2, 王焕江1   

  1. 1.华中科技大学 人工智能与自动化学院,湖北 武汉 430074
    2.海军工程大学 动力工程学院,湖北 武汉 430030
  • 收稿日期:2024-03-14 修回日期:2024-06-21 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 陈于涛
  • 第一作者简介:谢勇(1974-),男,副教授,博士,研究方向为智能优化与调度、物流与供应链管理。
  • 基金资助:
    国家自然科学基金(71771096)

Optimization of Product Oil Distribution with Multiple Trips and Multiple Due Dates under Dynamic Demand

Xie Yong1, Gao Hailong1, Chen Yutao2, Wang Huanjiang1   

  1. 1.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
    2.School of Power Engineering, Naval University of Engineering, Wuhan 430030, China
  • Received:2024-03-14 Revised:2024-06-21 Online:2025-08-20 Published:2025-08-26
  • Contact: Chen Yutao

摘要:

在动态需求情形下,综合考虑订单交货期、车辆运输时间窗等因素,以最大化配送收益为目标,建立了多行程多交货期的成品油周期性配送优化模型,并设计了基于强化学习的大邻域搜索算法进行求解。基于前向插入启发式算法构造初始解;设计了面向邻域算子选择的深度强化学习模型,通过双深度Q网络拟合动作价值函数,以选择最优的邻域操作算子,获得最优配送方案。实验结果表明:基于强化学习的大邻域搜索算法能够在保证求解质量的同时有效提升求解速度。

关键词: 成品油配送, 动态需求, 多行程, 多交货期, 强化学习

Abstract:

In the case of dynamic demand, considering the order due date, vehicle transportation time window, and other factors, this paper developed an optimization model of periodic product oil distribution with multiple trips and multiple due dates to maximize the distribution revenue. The paper also designed a reinforcement learning-based large neighborhood search algorithm to solve the problem. The initial solution was constructed based on the forward insertion heuristic algorithm. Then, a deep reinforcement learning model for neighborhood operator selection was designed. By fitting the action value function through the double deep Q network, the optimal neighborhood operator was selected, and the optimal distribution scheme was obtained. The experimental results show that the large neighborhood search algorithm based on reinforcement learning proposed in this paper can effectively improve the solving speed while ensuring the solution's quality.

Key words: product oil distribution, dynamic demand, multiple trips, multiple due dates, RL

中图分类号: