1 |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
|
|
Tao Fei, Liu Weiran, Zhang Meng, et al. Five-dimension Digital Twin Model and Its Ten Applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
|
2 |
Schleich Benjamin, Anwer Nabil, Luc Mathieu, et al. Shaping the Digital Twin for Design and Production Engineering[J]. CIRP Annals, 2017, 66(1): 141-144.
|
3 |
王金江, 牛晓彤, 黄祖广, 等. 数字孪生驱动的数控机床虚拟调试技术研究[J]. 制造技术与机床, 2022(10): 127-132.
|
|
Wang Jinjiang, Niu Xiaotong, Huang Zuguang, et al. Digital Twin-driven CNC Machine Tool Virtual Commissioning Technology Study[J]. Manufacturing Technology & Machine Tool, 2022(10): 127-132.
|
4 |
Tao Fei, Zhang Meng, Liu Yushan, et al. Digital Twin Driven Prognostics and Health Management for Complex Equipment[J]. CIRP Annals, 2018, 67(1): 169-172.
|
5 |
陆新时, 马嵩华, 胡天亮. 基于数字孪生的力能控制式压力机虚拟调试[J]. 小型微型计算机系统, 2022, 43(7): 1356-1361.
|
|
Lu Xinshi, Ma Songhua, Hu Tianliang. Virtual Commissioning of Force-power Controlled Press Machine Based on Digital Twin[J]. Journal of Chinese Computer Systems, 2022, 43(7): 1356-1361.
|
6 |
国家市场监督管理总局, 国家标准化管理委员会. 数控装备互联互通及互操作 第3部分: 面向实现的模型映射: [S]. 北京: 中国标准出版社, 2020.
|
|
State Administration for Market Regulation, National Standardization Management Committee. Interconnection and Interoperation of Numerical Control Equipment-part 3: Implementation Oriented Model Mapping: [S]. Beijing: Standards Press of China, 2020.
|
7 |
谭力恒, 陈刚, 蒋秉川, 等. 新工科背景下三维计算机图形学新形态课程建设研究[J]. 测绘通报, 2022(增1): 142-148.
|
|
Tan Liheng, Chen Gang, Jiang Bingchuan, et al. Research of New Curriculum Construction in Three-dimensional Computer Graphics Course Under the Background of New Engineering[J]. Bulletin of Surveying and Mapping, 2022(S1): 142-148.
|
8 |
Shakoor Modesar. FEMS-a Mechanics-oriented Finite Element Modeling Software[J]. Computer Physics Communications, 2021, 260: 107729.
|
9 |
陈孟雨, 贾敏智. 雾计算中延迟优化的服务动态部署方法仿真[J]. 计算机仿真, 2023, 40(4): 480-485.
|
|
Chen Mengyu, Jia Minzhi. Simulation of Services Dynamic Deployment Method with Delay Optimization in Fog Computing[J]. Computer Simulation, 2023, 40(4): 480-485.
|
10 |
施巍松, 张星洲, 王一帆, 等. 边缘计算: 现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69-89.
|
|
Shi Weisong, Zhang Xingzhou, Wang Yifan, et al. Edge Computing: State-of-the-art and Future Directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89.
|
11 |
Liu Bufan, Zhang Yingfeng, Zhang Geng, et al. Edge-cloud Orchestration Driven Industrial Smart Product-service Systems Solution Design Based on CPS and IIoT[J]. Advanced Engineering Informatics, 2019, 42: 100984.
|
12 |
国家市场监督管理总局, 国家标准化管理委员会. 数控装备互联互通及互操作 第2部分: 设备描述模型: [S]. 北京: 中国标准出版社, 2020
|
|
State Administration for Market Regulation, National Standardization Management Committee. Interconnection and Interoperation of Numerical Control Equipment-part 2: Device Description Model: [S]. Beijing: Standards Press of China, 2020.
|
13 |
国家市场监督管理总局, 国家标准化管理委员会. 数控装备互联互通及互操作 第4部分:数控机床对象字典: [S]. 北京: 中国标准出版社, 2020.
|
|
State Administration for Market Regulation, National Standardization Management Committee. Interconnection and Interoperation of Numerical Control Equipment-part 4: Object Dictionary of Numerical Control Machine Tools: [S]. Beijing: Standards Press of China, 2020.
|
14 |
王剑, 王好臣, 李学伟, 等. 基于OPC UA的数字孪生车间信息物理融合系统[J]. 现代制造工程, 2023(4): 43-50.
|
|
Wang Jian, Wang Haochen, Li Xuewei, et al. Digital Twin Workshop Information Physical Fusion System Based on OPC UA[J]. Modern Manufacturing Engineering, 2023(4): 43-50.
|
15 |
Schleipen Miriam, Gilani Syed-Shiraz, Bischoff Tino, et al. OPC UA & Industrie 4.0-enabling Technology with High Diversity and Variability[J]. Procedia CIRP, 2016, 57: 315-320.
|
16 |
Jürgen Jasperneite, Neumann Arne, Pethig Florian. OPC UA Versus MTConnect. S2 2015 [S]. [S.l.:s.n.], 2015: 16-21.
|
17 |
Martins André, Lucas João, Costelha Hugo, et al. Developing an OPC UA Server for CNC Machines[J]. Procedia Computer Science, 2021, 180: 561-570.
|
18 |
丁国龙, 汤明俊, 邱兆祥, 等. 基于西门子840Dsl的轧辊磨削软件开发[J]. 机床与液压, 2021, 49(3): 91-95.
|
|
Ding Guolong, Tang Mingjun, Qiu Zhaoxiang, et al. Roller Grinding Software Development Based on Sinumerik 840Dsl[J]. Machine Tool & Hydraulics, 2021, 49(3): 91-95.
|
19 |
叶佩青, 张勇, 张辉. 数控技术发展状况及策略综述[J]. 机械工程学报, 2015, 51(21): 113-120.
|
|
Ye Peiqing, Zhang Yong, Zhang Hui. Review on the Development and Strategies of CNC Technology[J]. Journal of Mechanical Engineering, 2015, 51(21): 113-120.
|
20 |
王立平, 张兆坤, 邵珠峰, 等. 机床制造加工数字化车间信息模型及其应用研究[J]. 机械工程学报, 2019, 55(9): 154-165.
|
|
Wang Liping, Zhang Zhaokun, Shao Zhufeng, et al. Research on the Information Model of Digital Machining Workshop for Machine Tools and Its Applications[J]. Journal of Mechanical Engineering, 2019, 55(9): 154-165.
|
21 |
Vishnu V S, Kiran George Varghese, Gurumoorthy B. A Data-driven Digital Twin of CNC Machining Processes for Predicting Surface Roughness[J]. Procedia CIRP, 2021, 104: 1065-1070.
|
22 |
Walter B, Marschner S R, Li Hongsong, et al. Microfacet Models for Refraction Through Rough Surfaces[C]//Proceedings of the 18th Eurographics Conference on Rendering Techniques. Goslar: Eurographics Association, 2007: 195-206.
|
23 |
汪方斌, 伊龙, 王峰, 等. 基于漫反射优化的金属表面偏振双向反射分布函数[J]. 光学学报, 2021, 41(11): 209-215.
|
|
Wang Fangbin, Yi Long, Wang Feng, et al. Polarization Bidirectional Reflection Distribution Function of Metal Surfaces Based on Diffuse Reflection Optimization[J]. Acta Optica Sinica, 2021, 41(11): 209-215.
|
24 |
Summerfield Mark. Rapid GUI Programming with Python and QT: The Definitive Guide to PyQt Programming[M]. Upper Saddle River: Prentice Hall Press, 2007.
|