1 |
董伟杰, 刘科研, 王义龙, 等. 高比例分布式发电接入配电网自适应控制方法[J]. 系统仿真学报, 2020, 32(10): 2052-2058.
|
|
Dong Weijie, Liu Keyan, Wang Yilong, et al. Adaptive Control Method of High Proportion Distributed Generation Connected to Distribution Network[J]. Journal of System Simulation, 2020, 32(10): 2052-2058.
|
2 |
Zhou Mike, Yan Jianfeng, Zhou Xiaoxin. Real-time Online Analysis of Power Grid[J]. CSEE Journal of Power and Energy Systems, 2020, 6(1): 236-238.
|
3 |
Song Xinya, Cai Hui, Kircheis Jan, et al. Application of Digital Twin Assistant-system in State Estimation for Inverter Dominated Grid[C]//2020 55th International Universities Power Engineering Conference (UPEC). Piscataway, NJ, USA: IEEE, 2020: 1-6.
|
4 |
陈强, 王意, 李康顺. 双重需求响应的虚拟电厂建模与调度研究[J]. 系统仿真学报, 2023, 35(4): 822-832.
|
|
Chen Qiang, Wang Yi, Li Kangshun. Research on Modeling and Scheduling of Virtual Power Plant with Dual Demand Response[J]. Journal of System Simulation, 2023, 35(4): 822-832.
|
5 |
沈沉, 曹仟妮, 贾孟硕, 等. 电力系统数字孪生的概念、特点及应用展望[J]. 中国电机工程学报, 2022, 42(2): 487-498, 中插4.
|
|
Shen Chen, Cao Qianni, Jia Mengshuo, et al. Concepts, Characteristics and Prospects of Application of Digital Twin in Power System[J]. Proceedings of the CSEE, 2022, 42(2): 487-498, 中插4.
|
6 |
冯昌森, 沈佳静, 赵崇娟, 等. 基于合作博弈的智慧能源社区协同运行策略[J]. 电力自动化设备, 2021, 41(4): 85-93.
|
|
Feng Changsen, Shen Jiajing, Zhao Chongjuan, et al. Cooperative Game-based Coordinated Operation Strategy of Smart Energy Community[J]. Electric Power Automation Equipment, 2021, 41(4): 85-93.
|
7 |
王珂, 姚建国, 余佩遥, 等. 基于深度强化学习的电网前瞻调度智能决策架构及关键技术初探[J]. 中国电机工程学报, 2022, 42(15): 5430-5438, 中插4.
|
|
Wang Ke, Yao Jianguo, Yu Peiyao, et al. Architecture and Key Technologies of Intelligent Decision-making of Power Grid Look-ahead Dispatch Based on Deep Reinforcement Learning[J]. Proceedings of the CSEE, 2022, 42(15): 5430-5438, 中插4.
|
8 |
Glavitsch H. Switching as Means of Control in the Power System[J]. International Journal of Electrical Power & Energy Systems, 1985, 7(2): 92-100.
|
9 |
Mazi A A, Wollenberg B F, Hesse M H. Corrective Control of Power System Flows by Line and Bus-bar Switching[J]. IEEE Transactions on Power Systems, 1986, 1(3): 258-264.
|
10 |
Fisher E B, O'Neill R P, Ferris M C. Optimal Transmission Switching[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1346-1355.
|
11 |
Khodaei A, Shahidehpour M. Transmission Switching in Security-constrained Unit Commitment[J]. IEEE Transactions on Power Systems, 2010, 25(4): 1937-1945.
|
12 |
David Fuller J, Ramasra Raynier, Cha Amanda. Fast Heuristics for Transmission-line Switching[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1377-1386.
|
13 |
Dehghanian P, Wang Yaping, Gurrala Gurunath, et al. Flexible Implementation of Power System Corrective Topology Control[J]. Electric Power Systems Research, 2015, 128: 79-89.
|
14 |
Alhazmi M, Dehghanian P, Wang Shiyuan, et al. Power Grid Optimal Topology Control Considering Correlations of System Uncertainties[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5594-5604.
|
15 |
魏利胜, 杨奔奔, 孙瑞霞. 基于新型BBO算法的微电网优化调度研究[J]. 系统仿真学报, 2023, 35(5): 1075-1085.
|
|
Wei Lisheng, Yang Benben, Sun Ruixia. Research on Optimal Scheduling of Microgrid Based on NBBO Algorithm[J]. Journal of System Simulation, 2023, 35(5): 1075-1085.
|
16 |
Duan Jiajun, Shi Di, Diao Ruisheng, et al. Deep-reinforcement-learning-based Autonomous Voltage Control for Power Grid Operations[J]. IEEE Transactions on Power Systems, 2020, 35(1): 814-817.
|
17 |
Xi Lei, Yu Lu, Xu Yanchun, et al. A Novel Multi-agent DDQN-AD Method-based Distributed Strategy for Automatic Generation Control of Integrated Energy Systems[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2417-2426.
|
18 |
马苗苗, 董利鹏, 刘向杰. 基于Q-learning算法的多智能体微电网能量管理策略[J]. 系统仿真学报, 2023, 35(7): 1487-1496.
|
|
Ma Miaomiao, Dong Lipeng, Liu Xiangjie. Energy Management Strategy of Multi-agent Microgrid Based on Q-learning Algorithm[J]. Journal of System Simulation, 2023, 35(7): 1487-1496.
|
19 |
王新迎, 赵琦, 赵黎媛, 等. 基于深度Q学习的电热综合能源系统能量管理[J]. 电力建设, 2021, 42(3): 10-18.
|
|
Wang Xinying, Zhao Qi, Zhao Liyuan, et al. Energy Management Approach for Integrated Electricity-heat Energy System Based on Deep Q-learning Network[J]. Electric Power Construction, 2021, 42(3): 10-18.
|
20 |
李嘉文, 余涛, 张孝顺, 等. 基于改进深度确定性梯度算法的AGC发电功率指令分配方法[J]. 中国电机工程学报, 2021, 41(21): 7198-7211, 中插2.
|
|
Li Jiawen, Yu Tao, Zhang Xiaoshun, et al. AGC Power Generation Command Allocation Method Based on Improved Deep Deterministic Policy Gradient Algorithm[J]. Proceedings of the CSEE, 2021, 41(21): 7198-7211, 中插2.
|
21 |
周毅, 周良才, 丁佳立, 等. 基于深度强化学习的电网拓扑优化及潮流控制[J]. 上海交通大学学报, 2021, 55(增2): 7-14.
|
|
Zhou Yi, Zhou Liangcai, Ding Jiali, et al. Power Network Topology Optimization and Power Flow Control Based on Deep Reinforcement Learning[J]. Journal of Shanghai Jiaotong University, 2021, 55(S2): 7-14.
|
22 |
Marot Antoine, Donnot Benjamin, Dulac-Arnold Gabriel, et al. Learning to Run a Power Network Challenge: a Retrospective Analysis[C]//Proceedings of the NeurIPS 2020 Competition and Demonstration Track. Chia Laguna Resort, Sardinia, Italy: PMLR, 2021: 112-132.
|
23 |
李宏仲, 王磊, 林冬, 等. 多主体参与可再生能源消纳的Nash博弈模型及其迁移强化学习求解[J]. 中国电机工程学报, 2019, 39(14): 4135-4149.
|
|
Li Hongzhong, Wang Lei, Lin Dong, et al. A Nash Game Model of Multi-agent Participation in Renewable Energy Consumption and the Solving Method Via Transfer Reinforcement Learning[J]. Proceedings of the CSEE, 2019, 39(14): 4135-4149.
|
24 |
Ahrarinouri Mehdi, Rastegar Mohammad, Karami K, et al. Distributed Reinforcement Learning Energy Management Approach in Multiple Residential Energy hubs[J]. Sustainable Energy, Grids and Networks, 2022, 32: 100795.
|
25 |
Qin Yude, Ke Ji, Wang Biao, et al. Energy Optimization for Regional Buildings Based on Distributed Reinforcement Learning[J]. Sustainable Cities and Society, 2022, 78: 103625.
|
26 |
林永君, 陈鑫, 杨凯, 等. 含多微网的主动配电网双层分布式优化调度[J]. 系统仿真学报, 2022, 34(11): 2323-2336.
|
|
Lin Yongjun, Chen Xin, Yang Kai, et al. Bilevel Distributed Optimal Dispatch of Active Distribution Network with Multi-microgrids[J]. Journal of System Simulation, 2022, 34(11): 2323-2336.
|
27 |
Krishnan S, Lam M, Chitlangia S, et al. QuaRL: Quantization for Fast and Environmentally Sustainable Reinforcement Learning[EB/OL]. (2022-11-14) [2023-06-30]. .
|
28 |
Louizos Christos, Reisser Matthias, Blankevoort T, et al. Relaxed Quantization for Discretized Neural Networks[EB/OL]. (2018-10-03) [2023-06-30]. .
|
29 |
Nagel M, Fournarakis M, Amjad R A, et al. A White Paper on Neural Network Quantization[EB/OL]. (2021-06-15) [2023-06-30]. .
|
30 |
Krishnamoorthi R. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper[EB/OL]. (2018-06-21) [2023-06-30]. .
|
31 |
Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous Control with Deep Reinforcement Learning[EB/OL]. (2019-07-05) [2023-06-30]. .
|
32 |
Horgan D, Quan J, Budden D, et al. Distributed Prioritized Experience Replay[J]. (2018-03-02) [2023-06-30]. .
|
33 |
Zhang Shangtong, Sutton Richard S. A Deeper Look at Experience Replay[EB/OL]. (2018-04-30) [2023-06-30]. .
|
34 |
Sutton R S, Barto A G. Introduction to Reinforcement Learning[M]. Cambridge: MIT Press, 1998.
|
35 |
Wang Ziyu, Schaul T, Hessel M, et al. Dueling Network Architectures for Deep Reinforcement Learning[C]//Proceedings of the 33rd International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2016: 1995-2003.
|
36 |
van Hasselt Hado, Guez A, Silver D. Deep Reinforcement Learning with Double Q-learning[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2016: 2094-2100.
|
37 |
Alexandre dos Santos Mignon, Ricardo Luis de Azevedo da Rocha. An Adaptive Implementation of ε-greedy in Reinforcement Learning[J]. Procedia Computer Science, 2017, 109: 1146-1151.
|