系统仿真学报 ›› 2024, Vol. 36 ›› Issue (10): 2345-2358.doi: 10.16182/j.issn1004731x.joss.23-0743
• 论文 • 上一篇
王聪, 余佳英, 张宏立
收稿日期:
2023-06-19
修回日期:
2023-08-14
出版日期:
2024-10-15
发布日期:
2024-10-18
通讯作者:
张宏立
第一作者简介:
王聪(1989-),女,讲师,博士,研究方向为智能控制、群智能算法。
基金资助:
Wang Cong, Yu Jiaying, Zhang Hongli
Received:
2023-06-19
Revised:
2023-08-14
Online:
2024-10-15
Published:
2024-10-18
Contact:
Zhang Hongli
摘要:
针对以完工时间和总能耗为目标的节能无等待流水车间调度问题(energy-efficient no-wait flow shop scheduling problem,EENWFSP),设计一种混合离散状态转移算法(hybrid discrete state transition algorithm,HDSTA)进行求解。根据问题特性设计工序和速度矩阵的编码方式,采用启发式算法获得优质的初始解。根据EENWFSP性质,对4个离散操作算子进行任务分配,将嵌入二次状态转移的交换、移动、对称算子用于工序优化,替换算子用于机器速度优化,并在替换算子中嵌入基于关键路径的速度替换策略。设计了一种改进的破坏重构操作,用于进一步提高Pareto解的质量。通过与4种算法在测试实例上的实验结果分析,表明HDSTA在解决EENWFSP时具有较强优势。
中图分类号:
王聪,余佳英,张宏立 . 基于混合离散状态转移算法的多目标节能无等待流水车间调度[J]. 系统仿真学报, 2024, 36(10): 2345-2358.
Wang Cong,Yu Jiaying,Zhang Hongli . Multi-objective Energy-efficient No-wait Flow Shop Scheduling Based on Hybrid Discrete State Transition Algorithm[J]. Journal of System Simulation, 2024, 36(10): 2345-2358.
表8
各算法的C指标平均值对比
算例 | ||||||||
---|---|---|---|---|---|---|---|---|
平均 | 0.99 | 0.00 | 0.70 | 0.00 | 0.63 | 0.00 | 0.99 | 0.00 |
20×5 | 1.00 | 0.00 | 0.98 | 0.00 | 0.87 | 0.00 | 0.99 | 0.00 |
20×10 | 1.00 | 0.00 | 0.83 | 0.00 | 0.76 | 0.00 | 1.00 | 0.00 |
20×20 | 1.00 | 0.00 | 0.63 | 0.00 | 0.77 | 0.00 | 1.00 | 0.00 |
50×5 | 1.00 | 0.00 | 0.71 | 0.00 | 0.56 | 0.00 | 1.00 | 0.00 |
50×10 | 1.00 | 0.00 | 0.71 | 0.00 | 0.48 | 0.00 | 0.96 | 0.00 |
50×20 | 1.00 | 0.00 | 0.63 | 0.00 | 0.49 | 0.00 | 1.00 | 0.00 |
100×5 | 1.00 | 0.00 | 0.58 | 0.00 | 0.53 | 0.00 | 0.95 | 0.00 |
100×10 | 1.00 | 0.00 | 0.67 | 0.00 | 0.45 | 0.00 | 1.00 | 0.00 |
100×20 | 1.00 | 0.00 | 0.65 | 0.00 | 0.46 | 0.00 | 1.00 | 0.00 |
200×10 | 0.96 | 0.00 | 0.55 | 0.00 | 0.84 | 0.00 | 1.00 | 0.00 |
200×20 | 0.98 | 0.00 | 0.71 | 0.00 | 0.72 | 0.00 | 1.00 | 0.00 |
表9
各算法的ONVG平均值对比
算例 | HDSTA | HCS | DABC | IG_ALL | NSGA-II |
---|---|---|---|---|---|
平均 | 61.48 | 14.14 | 23.67 | 57.48 | 26.26 |
20×5 | 85.20 | 12.80 | 18.80 | 66.60 | 43.20 |
20×10 | 73.80 | 13.00 | 34.60 | 83.60 | 22.40 |
20×20 | 60.00 | 12.20 | 35.00 | 48.60 | 25.40 |
50×5 | 73.00 | 28.25 | 36.28 | 84.25 | 35.20 |
50×10 | 74.60 | 17.00 | 25.61 | 58.02 | 34.00 |
50×20 | 41.00 | 8.60 | 15.10 | 42.20 | 11.60 |
100×5 | 66.40 | 15.10 | 17.24 | 84.80 | 43.40 |
100×10 | 68.70 | 19.20 | 9.21 | 58.20 | 23.32 |
100×20 | 49.80 | 12.20 | 12.15 | 42.20 | 18.60 |
200×10 | 36.20 | 8.00 | 37.84 | 27.00 | 20.00 |
200×20 | 47.60 | 9.20 | 18.54 | 36.80 | 11.71 |
表10
各算法的SP平均值对比
算例 | HDSTA | HCS | DABC | IG_ALL | NSGA-II |
---|---|---|---|---|---|
平均 | 5.77 | 36.80 | 25.09 | 18.14 | 24.30 |
20×5 | 5.99 | 23.40 | 15.10 | 8.40 | 9.72 |
20×10 | 5.72 | 33.6 | 24.71 | 14.29 | 14.91 |
20×20 | 4.99 | 34.37 | 32.57 | 26.96 | 18.49 |
50×5 | 7.04 | 21.28 | 31.24 | 9.31 | 19.27 |
50×10 | 6.07 | 49.57 | 32.53 | 9.78 | 25.66 |
50×20 | 5.12 | 40.61 | 17.84 | 21.13 | 32.69 |
100×5 | 7.60 | 50.40 | 31.60 | 13.58 | 22.00 |
100×10 | 4.32 | 39.12 | 14.34 | 9.65 | 23.20 |
100×20 | 5.05 | 31.94 | 24.31 | 23.40 | 41.49 |
200×10 | 6.63 | 38.29 | 16.30 | 29.62 | 48.44 |
200×20 | 4.93 | 42.18 | 35.40 | 33.45 | 11.38 |
1 | Gahm Christian, Denz Florian, Dirr Martin, et al. Energy-efficient Scheduling in Manufacturing Companies: A Review and Research Framework[J]. European Journal of Operational Research, 2016, 248(3): 744-757. |
2 | 王凌, 王晶晶, 吴楚格. 绿色车间调度优化研究进展[J]. 控制与决策, 2018, 33(3): 385-391. |
Wang Ling, Wang Jingjing, Wu Chuge. Advances in Green Shop Scheduling and Optimization[J]. Control and Decision, 2018, 33(3): 385-391. | |
3 | Lei Deming, Gao Liang, Zheng Youlian. A Novel Teaching-learning-based Optimization Algorithm for Energy-efficient Scheduling in Hybrid Flow Shop[J]. IEEE Transactions on Engineering Management, 2018, 65(2): 330-340. |
4 | Gu Wenbin, Li Zhuo, Dai Min, et al. An Energy-efficient Multi-objective Permutation Flow Shop Scheduling Problem Using an Improved Hybrid Cuckoo Search Algorithm[J]. Advances in Mechanical Engineering, 2021, 13(6): 16878140211023603. |
5 | 任彩乐, 杨旭东, 张超勇, 等. 面向节能的混合流水车间调度问题建模与优化[J]. 计算机集成制造系统, 2019, 25(8): 1965-1980. |
Ren Caile, Yang Xudong, Zhang Chaoyong, et al. Modeling and Optimization for Energy-efficient Hybrid Flow-shop Scheduling Problem[J]. Computer Integrated Manufacturing Systems, 2019, 25(8): 1965-1980. | |
6 | 艾子义, 雷德明. 基于新型蛙跳算法的低碳柔性作业车间调度[J]. 控制理论与应用, 2017, 34(10): 1361-1368. |
Ai Ziyi, Lei Deming. A Novel Shuffled Frog Leaping Algorithm for Low Carbon Flexible Job Shop Scheduling[J]. Control Theory & Applications, 2017, 34(10): 1361-1368. | |
7 | Tang Dunbing, Dai Min, Salido Miguel A, et al. Energy-efficient Dynamic Scheduling for a Flexible Flow Shop Using an Improved Particle Swarm Optimization[J]. Computers in Industry, 2016, 81: 82-95. |
8 | Shao Weishi, Pi Dechang, Shao Zhongshi. An Extended Teaching-learning Based Optimization Algorithm for Solving No-wait Flow Shop Scheduling Problem[J]. Applied Soft Computing, 2017, 61: 193-210. |
9 | Zhao Fuqing, Liu Huan, Zhang Yi, et al. A Discrete Water Wave Optimization Algorithm for No-wait Flow Shop Scheduling Problem[J]. Expert Systems with Applications, 2018, 91: 347-363. |
10 | Lin S W, Ying K C. Optimization of Makespan for No-wait Flowshop Scheduling Problems Using Efficient Matheuristics[J]. Omega, 2016, 64: 115-125. |
11 | Benini L, Bogliolo A, De Micheli G. A Survey of Design Techniques for System-level Dynamic Power Management[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2000, 8(3): 299-316. |
12 | Liu C H, Huang D H. Reduction of Power Consumption and Carbon Footprints by Applying Multi-objective Optimisation via Genetic Algorithms[J]. International Journal of Production Research, 2014, 52(2): 337-352. |
13 | Ding Jianya, Song Shiji, Wu Cheng. Carbon-efficient Scheduling of Flow Shops by Multi-objective Optimization[J]. European Journal of Operational Research, 2016, 248(3): 758-771. |
14 | Jiang Enda, Wang Ling. An Improved Multi-objective Evolutionary Algorithm Based on Decomposition for Energy-efficient Permutation Flow Shop Scheduling Problem with Sequence-dependent Setup Time[J]. International Journal of Production Research, 2019, 57(6): 1756-1771. |
15 | Fatih Tasgetiren M, Yüksel Damla, Gao Liang, et al. A Discrete Artificial Bee Colony Algorithm for the Energy-efficient No-wait Flowshop Scheduling Problem[J]. Procedia Manufacturing, 2019, 39: 1223-1231. |
16 | Wang Jingjing, Wang Ling. A Knowledge-based Cooperative Algorithm for Energy-efficient Scheduling of Distributed Flow-shop[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(5): 1805-1819. |
17 | 潘子肖, 雷德明. 基于问题性质的分布式低碳并行机调度算法研究[J]. 自动化学报, 2020, 46(11): 2427-2438. |
Pan Zixiao, Lei Deming. Research on Property-based Distributed Low Carbon Parallel Machines Scheduling Algorithm[J]. Acta Automatica Sinica, 2020, 46(11): 2427-2438. | |
18 | Zhou Xiaojun, Yang Chunhua, Gui Weihua. State Transition Algorithm[J]. Journal of Industrial and Management Optimization, 2012, 8(4): 1039-1056. |
19 | 阳春华, 唐小林, 周晓君, 等. 一种求解旅行商问题的离散状态转移算法[J]. 控制理论与应用, 2013, 30(8): 1040-1046. |
Yang Chunhua, Tang Xiaolin, Zhou Xiaojun, et al. A Discrete State Transition Algorithm for Traveling Salesman Problem[J]. Control Theory & Applications, 2013, 30(8): 1040-1046. | |
20 | Zhou Xiaojun, Gao D Y, Simpson A R. Optimal Design of Water Distribution Networks by a Discrete State Transition Algorithm[J]. Engineering Optimization, 2016, 48(4): 603-628. |
21 | 董天雪, 阳春华, 周晓君, 等. 一种求解企业员工指派问题的离散状态转移算法[J]. 控制理论与应用, 2016, 33(10): 1378-1388. |
Dong Tianxue, Yang Chunhua, Zhou Xiaojun, et al. A Novel Discrete State Transition Algorithm for Staff Assignment Problem[J]. Control Theory & Applications, 2016, 33(10): 1378-1388. | |
22 | Gui Lin, Gao Liang, Li Xinyu. Anomalies in Special Permutation Flow Shop Scheduling Problems[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 46. |
23 | Mansouri S A, Aktas E, Besikci Umut. Green Scheduling of a Two-machine Flowshop: Trade-off Between Makespan and Energy Consumption[J]. European Journal of Operational Research, 2016, 248(3): 772-788. |
24 | Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
25 | 钟祾充, 钱斌, 胡蓉, 等. 混合布谷鸟算法求解绿色流水车间调度问题[J]. 中国机械工程, 2018, 29(22): 2674-2681. |
Zhong Lingchong, Qian Bin, Hu Rong, et al. HCS Algorithm for Multi-objective Flow Shop Scheduling Problems with Energy Consumption[J]. China Mechanical Engineering, 2018, 29(22): 2674-2681. | |
26 | Öztop Hande, Fatih Tasgetiren M, Deniz Türsel Eliiyi, et al. Green Permutation Flowshop Scheduling: A Trade-off-between Energy Consumption and Total Flow Time[C]//Intelligent Computing Methodologies. Cham: Springer International Publishing, 2018: 753-759. |
[1] | 李飞行, 邢立宁, 周宇. 基于多目标演化优化的SVM对抗仿真测试算法[J]. 系统仿真学报, 2024, 36(9): 2016-2031. |
[2] | 李二超, 张生辉. 基于DMOEA-APTC算法的无人机在线航迹规划[J]. 系统仿真学报, 2024, 36(9): 2086-2099. |
[3] | 张闻强, 王晓萌, 张晓晓, 张国辉. 集配一体化车辆路径规划的混合进化多目标优化[J]. 系统仿真学报, 2024, 36(8): 1914-1928. |
[4] | 蒋权, 魏静萱. 用于动态柔性作业车间调度的实时调度方法[J]. 系统仿真学报, 2024, 36(7): 1609-1620. |
[5] | 邓明君, 胡辛瑕, 李响, 徐丽萍. 基于车速引导和感应控制的干线协调优化方法[J]. 系统仿真学报, 2024, 36(6): 1309-1321. |
[6] | 温廷新, 关婷誉. 考虑能耗和运输的有限缓冲区混合流水车间调度[J]. 系统仿真学报, 2024, 36(6): 1344-1358. |
[7] | 赵嘉, 赖智臻, 吴润秀, 崔志华, 王晖. 层级引导的增强型多目标萤火虫算法[J]. 系统仿真学报, 2024, 36(5): 1152-1164. |
[8] | 王昱博, 胡成玉, 龚文引. 基于帕累托前沿关系求解约束多目标优化问题[J]. 系统仿真学报, 2024, 36(4): 901-914. |
[9] | 曾少达, 刘海林. 5G室内分布系统规划建模及优化算法[J]. 系统仿真学报, 2024, 36(3): 659-672. |
[10] | 安靖, 司光亚, 曾妙婷. 模型与数据混合驱动的代理模型构建方法研究[J]. 系统仿真学报, 2024, 36(3): 756-769. |
[11] | 王辉, 彭乐. 改进多目标蜂群算法优化洗出运动及仿真实验[J]. 系统仿真学报, 2024, 36(2): 436-448. |
[12] | 徐宜刚, 陈勇, 王宸, 彭运贤. 改进NSGA-III求解高维多目标绿色柔性作业车间调度问题[J]. 系统仿真学报, 2024, 36(10): 2314-2329. |
[13] | 钟麟, 佟明安, 李盛. 特定多任务下飞机航迹规划研究[J]. 系统仿真学报, 2023, 35(9): 1909-1917. |
[14] | 张立, 贺明玲, 尹秋霜, 李宁, 余乐安. 不确定条件下多周期应急物资配送优化研究[J]. 系统仿真学报, 2023, 35(8): 1669-1680. |
[15] | 余佳英, 张宏立, 董颖超. 基于离散状态转移算法的无等待流水车间调度研究[J]. 系统仿真学报, 2023, 35(5): 1034-1045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||