系统仿真学报 ›› 2023, Vol. 35 ›› Issue (11): 2289-2311.doi: 10.16182/j.issn1004731x.joss.22-0672
• 综述 • 下一篇
收稿日期:
2022-06-21
修回日期:
2022-10-17
出版日期:
2023-11-25
发布日期:
2023-11-23
通讯作者:
龚建兴
E-mail:429070654@qq.com;fj_gjx@nudt.edu.cn
第一作者简介:
毛子泉(1999-),男,硕士生,研究方向为武器装备自动化与仿真。E-mail:429070654@qq.com
Mao Ziquan(), Gao Jialong, Gong Jianxing(
), Liu Quan
Received:
2022-06-21
Revised:
2022-10-17
Online:
2023-11-25
Published:
2023-11-23
Contact:
Gong Jianxing
E-mail:429070654@qq.com;fj_gjx@nudt.edu.cn
摘要:
阐述了虚实结合仿真的概念与内涵。根据技术思路的不同,从数字孪生、LVC(live-virtual-constructive)仿真和平行系统3个领域总结了当前虚实结合仿真的发展现状和存在的问题,分析对比了3种方式的异同和优缺点,并阐述了其主要适用领域。针对目前军事训练、作战试验、装备研发、维修维护遇到的困难,以理论指导、案例对比、迁移运用的方式提出了基于虚实结合的解决方法。针对军事领域相关装备和试验的高保真性、保密性和安全性要求,提出了未来虚实结合仿真的发展方向。
中图分类号:
毛子泉,高家隆,龚建兴等 . 虚实结合仿真在军事领域的应用综述[J]. 系统仿真学报, 2023, 35(11): 2289-2311.
Mao Ziquan,Gao Jialong,Gong Jianxing,et al . Application of Virtual-Real Simulation in Military Field[J]. Journal of System Simulation, 2023, 35(11): 2289-2311.
1 | 文浪. 无人机飞控地面半实物仿真平台研究与设计[D]. 南昌: 南昌航空大学, 2020. |
Wen Lang. Research and Design of UAV Flight Control Ground Hardware in the Loop Simulation Platform[D]. Nanchang: Nanchang Hangkong University, 2020. | |
2 | 庞维建, 李辉. LVC仿真集成技术发展趋势研究[C]//第三十三届中国仿真大会论文集. 北京: 中国仿真学会, 2021: 32-36. |
3 | 刘瑜, 谢强. 数字孪生的技术特点及在飞行试验中的应用展望[J]. 系统仿真学报, 2021, 33(6): 1364-1373. |
Liu Yu, Xie Qiang. Technical Characteristics of Digital Twins and Application Prospects in the Field of Flight Testing[J]. Journal of System Simulation, 2021, 33(6): 1364-1373. | |
4 | 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 19(5): 485-489, 514. |
Wang Feiyue. Parallel System Methods for Management and Control of Complex Systems[J]. Control and Decision, 2004, 19(5): 485-489, 514. | |
5 | 邓能文. 基于虚实结合的互联互通测试平台搭建方案[J]. 科技创新与应用, 2020(4): 118-119. |
6 | 周进登, 宋健, 刘影, 等. 美军LVC建设梳理及对我军仿真建设的启发[J]. 网信军民融合, 2020(8): 45-48. |
7 | Fernández-Villacañas Marín M A. Beyond the Use of Simulators for the Training of Security and Defence Forces: New Challenges in Modeling & Simulation of Emerging Holistic Systems for Combat Air Forces[C]//15th International Technology, Education and Development Conference. Valencia, Spain: IATED, 2021: 8528-8537. |
8 | 王晓路, 贾长伟, 刘闻, 等. 体系级LVC仿真集成技术研究[C]//2020中国仿真大会论文集. 北京: 中国仿真学会, 2020: 358-364. |
9 | 冯琦琦, 董志明, 贾长伟, 等. 面向LVC仿真的多层分级时间管理方法研究[J]. 计算机仿真, 2020, 37(12): 1-4, 11. |
Feng Qiqi, Dong Zhiming, Jia Changwei, et al. Research on Multi-level Time Management Method for LVC Simulation[J]. Computer Simulation, 2020, 37(12): 1-4, 11. | |
10 | 张衡. 基于DDS的LVC实时互联及变步长仿真技术研究[D]. 长沙: 国防科技大学, 2017. |
Zhang Heng. Research on LVC Real-time Integration and Variable Step Simulation Based on DDS[D]. Changsha: National University of Defense Technology, 2017. | |
11 | 杜楠, 谭亚新. 面向SaaS的LVC仿真试验中间件设计研究[J]. 系统仿真学报, 2021, 33(6): 1268-1276. |
Du Nan, Tan Yaxin. Design of LVC Simulation Test Middleware for SaaS[J]. Journal of System Simulation, 2021, 33(6): 1268-1276. | |
12 | 李超, 朱宁, 吴正雄, 等. 基于LVC仿真的资源描述方法与规范研究[C]//2020中国系统仿真与虚拟现实技术高层论坛论文集. 北京: 中国自动化学会专家咨询工作委员会, 中国计算机系统仿真应用工作委员会, 中国仪器仪表学会产品信息委员会, 北京国信融合信息技术研究院, 2020: 215-219. |
13 | 高昂, 董志明, 张国辉, 等. LVC训练系统中计算机生成兵力生成技术研究[J]. 系统仿真学报, 2021, 33(3): 745-752. |
Gao Ang, Dong Zhiming, Zhang Guohui, et al. Research on Generation Technology of Computer Generated Force in LVC Training System[J]. Journal of System Simulation, 2021, 33(3): 745-752. | |
14 | 高昂, 董志明, 郭齐胜, 等. 陆军分队LVC战术训练虚实实体配置研究[J]. 系统仿真学报, 2021, 33(4): 982-994. |
Gao Ang, Dong Zhiming, Guo Qisheng, et al. Study on Virtual and Real Entity Configuration of Army Units LVC Tactical Training[J]. Journal of System Simulation, 2021, 33(4): 982-994. | |
15 | Källström J, Granlund R, Heintz F. Design of Simulation-based Pilot Training Systems Using Machine Learning Agents[J]. The Aeronautical Journal, 2022, 126(1300): 907-931. |
16 | 高昂, 董志明, 李亮, 等. 面向LVC训练的蓝方虚拟实体近距空战决策建模[J]. 系统工程与电子技术, 2021, 43(6): 1606-1617. |
Gao Ang, Dong Zhiming, Li Liang, et al. Decision Modeling of Close-range Air Combat for LVC Training in Blue-side Virtual Entity[J]. Systems Engineering and Electronics, 2021, 43(6): 1606-1617. | |
17 | 白爽, 洪俊. 美军面向LVC联合训练的技术发展[J]. 指挥控制与仿真, 2020, 42(5): 135-140. |
Bai Shuang, Hong Jun. Development of U.S. LVC Joint Training Technology[J]. Command Control & Simulation, 2020, 42(5): 135-140. | |
18 | Gao Yang, Zhang Yuanyuan, Zhou Xiaoguang, et al. Overview of Simulation Architectures Supporting Live Virtual Constructive (LVC) Integrated Training[C]//2021 6th International Conference on Control, Robotics and Cybernetics (CRC). Piscataway, NJ, USA: IEEE, 2021: 333-338. |
19 | 李进, 吉宁, 刘小荷, 等. 美军新一代支持联合训练的JLVC2020框架研究[J]. 计算机仿真, 2015, 32(1): 463-467. |
Li Jin, Ji Ning, Liu Xiaohe, et al. Study of JLVC2020's Framework for U.S. New Generation Joint Training[J]. Computer Simulation, 2015, 32(1): 463-467. | |
20 | 吴金平, 陆铭华, 薛昌友. 潜艇作战系统LVC 一体化仿真设计与引擎实现[J]. 系统仿真学报, 2021, 33(7): 1647-1653. |
Wu Jinping, Lu Minghua, Xue Changyou. Design and Engine Implementation of Submarine Combat System Simulation Based on LVC[J]. Journal of System Simulation, 2021, 33(7): 1647-1653. | |
21 | 徐强, 金振中, 杨继坤. 基于LVC的水面舰艇作战试验环境构设研究[J]. 舰船电子工程, 2021, 41(9): 157-160. |
Xu Qiang, Jin Zhenzhong, Yang Jikun. Research on the Construction of Operational Test Environment for Warships Based on LVC[J]. Ship Electronic Engineering, 2021, 41(9): 157-160. | |
22 | 杨晓岚, 陈奡, 张翠侠, 等. 基于LVC的试验鉴定支撑平台构建方法研究[C]//第六届中国指挥控制大会论文集(上册). 北京: 电子工业出版社, 2018: 534-536. |
23 | Chen Minze, Yang Rui, Tao Zhenxiang, et al. Mixed Reality LVC Simulation: A New Approach to Study Pedestrian Behaviour[J]. Building and Environment, 2022, 207, Part B: 108404. |
24 | Lee D, Kim D, Ahn M K, et al. Cy-through: Toward a Cybersecurity Simulation for Supporting Live, Virtual, and Constructive Interoperability[J]. IEEE Access, 2021, 9: 10041-10053. |
25 | Pan Bo, Tao Qian, Wang Dong, et al. Secure Data Access and Consensus Algorithm based on Consortium Blockchain in LVC[C]//2021 International Conference on Computer, Blockchain and Financial Development (CBFD). Piscataway, NJ, USA: IEEE, 2021: 185-189. |
26 | Liao Min, Renaud G, Bombardier Y. Airframe Digital Twin Technology Adaptability Assessment and Technology Demonstration[J]. Engineering Fracture Mechanics, 2020, 225: 106793. |
27 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
Tao Fei, Liu Weiran, Liu Jianhua, et al. Digital Twin and Its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. | |
28 | Errandonea I, Beltrán Sergio, Arrizabalaga S. Digital Twin for Maintenance: A Literature Review[J]. Computers in Industry, 2020, 123: 103316. |
29 | Liu Jianmin, Dong Yi, Liu Yanbin, et al. Prediction Study of the Heavy Vehicle Driving State Based on Digital Twin Model[C]//2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). Piscataway, NJ, USA: IEEE, 2021: 789-797. |
30 | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. |
Tao Fei, Liu Weiran, Zhang Meng, et al. Five-dimension Digital Twin Model and Its Ten Applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. | |
31 | 王鹏, 杨妹, 祝建成, 等. 面向数字孪生的动态数据驱动建模与仿真方法[J]. 系统工程与电子技术, 2020, 42(12): 2779-2786. |
Wang Peng, Yang Mei, Zhu Jiancheng, et al. Dynamic Data Driven Modeling and Simulation Method for Digital Twin[J]. Systems Engineering and Electronics, 2020, 42(12): 2779-2786. | |
32 | Malek N G, Tayefeh M, Bender D, et al. LIVE Digital Twin for Smart Maintenance in Structural Systems[J]. IFAC-Papers OnLine, 2021, 54(1): 1047-1052. |
33 | 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 2019, 25(10): 2405-2418. |
Tao Fei, Ma Xin, Hu Tianliang, et al. Research on Digital Twin Standard System[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418. | |
34 | 张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8): 2171-2186. |
Zhang Chenyuan, Tao Fei. Evaluation Index System for Digital Twin Model[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2171-2186. | |
35 | Juarez M G, Botti V J, Giret A S. Digital Twins: Review and Challenges[J]. Journal of Computing and Information Science in Engineering, 2021, 21(3): 030802. |
36 | 张佳朋, 刘检华, 龚康, 等. 基于数字孪生的航天器装配质量监控与预测技术[J]. 计算机集成制造系统, 2021, 27(2): 605-616. |
Zhang Jiapeng, Liu Jianhua, Gong Kang, et al. Spacecraft Assembly Quality Control and Prediction Technology Based on Digital Twin[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 605-616. | |
37 | 李洪阳, 魏慕恒, 黄洁, 等. 信息物理系统技术综述[J]. 自动化学报, 2019, 45(1): 37-50. |
Li Hongyang, Wei Muheng, Huang Jie, et al. Survey on Cyber-physical Systems[J]. Acta Automatica Sinica, 2019, 45(1): 37-50. | |
38 | 阴鹏艳. 美国防部首份《增材制造战略》解析[N]. 中国航空报, 2021-03-16(A11). |
39 | Holmes D, Papathanasaki M, Maglaras L, et al. Digital Twins and Cyber Security-solution or Challenge?[C]// 2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM). Piscataway, NJ, USA: IEEE, 2021: 1-8. |
40 | Mendi A F, Erol T, Doğan Dilara. Digital Twin in the Military Field[J]. IEEE Internet Computing, 2022, 26(5): 33-40. |
41 | Wang Peng, Yang Mei, Zhu Jiancheng, et al. Digital Twin-enabled Online Battlefield Learning with Random Finite Sets[J]. Computational Intelligence and Neuroscience, 2021, 2021: 5582241. |
42 | Shen Gaoqing, Lei Lei, Li Zhilin, et al. Deep Reinforcement Learning for Flocking Motion of Multi-UAV Systems: Learn from a Digital Twin[J]. IEEE Internet of Things Journal, 2022, 9(13): 11141-11153. |
43 | Lee E B K, L Van Bossuyt Douglas, Bickford J F. Digital Twin-enabled Decision Support in Mission Engineering and Route Planning[J]. Systems, 2021, 9(4): 82. |
44 | Ji Guang, Hao Jianguo, Gao Jialong, et al. Digital Twin Modeling Method for Individual Combat Quadrotor UAV[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway, NJ, USA: IEEE, 2021: 1-4. |
45 | 邓烨, 奉祁林, 赵健. 数字孪生战场建设探讨[J]. 防护工程, 2020, 42(3): 58-64. |
Deng Ye, Feng Qilin, Zhao Jian. Discussion on Construction of Digital Twin Battlefield[J]. Protective Engineering, 2020, 42(3): 58-64. | |
46 | Alam K M, El Saddik A. C2PS: A Digital Twin Architecture Reference Model for the Cloud-based Cyber-physical Systems[J]. IEEE Access, 2017, 5: 2050-2062. |
47 | Wang Danshi, Zhang Zhiguo, Zhang Min, et al. The Role of Digital Twin in Optical Communication: Fault Management, Hardware Configuration, and Transmission Simulation[J]. IEEE Communications Magazine, 2021, 59(1): 133-139. |
48 | 郑伟皓, 周星宇, 吴虹坪, 等. 基于三维GIS技术的公路交通数字孪生系统[J]. 计算机集成制造系统, 2020, 26(1): 28-39. |
Zheng Weihao, Zhou Xingyu, Wu Hongping, et al. Digital Twin System for Highway Traffic Based on 3D GIS Technology[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 28-39. | |
49 | 陶飞, 张辰源, 张贺, 等. 未来装备探索:数字孪生装备[J]. 计算机集成制造系统, 2022, 28(1): 1-16. |
Tao Fei, Zhang Chenyuan, Zhang He, et al. Future Equipment Exploration: Digital Twin Equipment[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 1-16. | |
50 | 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星:概念、关键技术及应用[J]. 计算机集成制造系统, 2020, 26(3): 565-588. |
Liu Weiran, Tao Fei, Cheng Jiangfeng, et al. Digital Twin Satellite: Concept, Key Technologies and Applications[J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 565-588. | |
51 | 军事文摘. 美国测试虚拟"宙斯盾"反导和反舰能力[N]. 国防时报, 2021-07-21(11). |
52 | 张敏. 美军打造虚拟宙斯盾系统[J]. 军事文摘, 2018(5): 39-41. |
53 | Karve P M, Guo Yulin, Kapusuzoglu B, et al. Digital Twin Approach for Damage-tolerant Mission Planning Under Uncertainty[J]. Engineering Fracture Mechanics, 2020, 225: 106766. |
54 | 郭域峰, 柴震, 陈敏. 基于ACP方法的战略态势信息融合平行系统研究[C]//第六届中国指挥控制大会论文集(上册). 北京: 电子工业出版社, 2018: 468-472. |
55 | 张俊, 许沛东, 王飞跃. 平行系统和数字孪生的一种数据驱动形式表示及计算框架[J]. 自动化学报, 2020, 46(7): 1346-1356. |
Zhang Jun, Xu Peidong, Wang Feiyue. Parallel Systems and Digital Twins: A Data-driven Mathematical Representation and Computational Framework[J]. Acta Automatica Sinica, 2020, 46(7): 1346-1356. | |
56 | 袁勇, 王飞跃. 平行区块链:概念、方法与内涵解析[J]. 自动化学报, 2017, 43(10): 1703-1712. |
Yuan Yong, Wang Feiyue. Parallel Blockchain: Concept, Methods and Issues[J]. Acta Automatica Sinica, 2017, 43(10): 1703-1712. | |
57 | 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统: 发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031. |
Yang Linyao, Chen Siyuan, Wang Xiao, et al. Digital Twins and Parallel Systems: State of the Art, Comparisons and Prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001-2031. | |
58 | Zhu Fenghua, Yisheng Lü, Chen Yuanyuan, et al. Parallel Transportation Systems: Toward IoT-enabled Smart Urban Traffic Control and Management[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4063-4071. |
59 | Almalaq A, Hao Jun, Zhang Jun, et al. Parallel Building: A Complex System Approach for Smart Building Energy Management[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1452-1461. |
60 | Huang Tianyi, Zhu W. Long-term Recommender System Based on ACP Framework[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway, NJ, USA: IEEE, 2021: 216-218. |
61 | Wang Shuai, Tu Xiaojun, Chai Hongfeng, et al. Blockchain-powered Parallel FinTech Regulatory Sandbox Based on the ACP Approach[J]. IFAC-PapersOnLine, 2020, 53(5): 863-867. |
62 | Gong Linjuan, Hou Guolian, Gu Hongqun, et al. Parallel Control of Supercritical Thermal Power Unit Based on the ACP Method[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway, NJ, USA: IEEE, 2021: 1-4. |
63 | Li Shimeng, Wang Yutong, Wang Xiao, et al. Mechanical Design Paradigm Based on ACP Method in Parallel Manufacturing[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway, NJ, USA: IEEE, 2021: 1-4. |
64 | 袁利, 程铭, 王磊. 航天器飞行控制仿真与平行系统[J]. 宇航学报, 2021, 42(8): 982-988. |
Yuan Li, Cheng Ming, Wang Lei. Spacecraft Flight Control Simulation and Parallel Systems[J]. Journal of Astronautics, 2021, 42(8): 982-988. | |
65 | 黄文德, 贺达江, 米贤武, 等. 一种基于平行系统的大型复杂天基组网星座自主运行框架[J]. 电子测量技术, 2021, 44(17): 14-18. |
Huang Wende, He Dajiang, Mi Xianwu, et al. Framework for Autonomous Operation of Large Complex Space-based Network Constellation Based on Parallel Systems[J]. Electronic Measurement Technology, 2021, 44(17): 14-18. | |
66 | 谢堂涛, 易方, 梅光焜. 平行系统理论在体系对抗训练中的应用初探[J]. 现代防御技术, 2020, 48(1): 100-106. |
Xie Tangtao, Yi Fang, Mei Guangkun. Preliminary Exploration on Application of Parallel System Theory in Systemic Confrontation Training[J]. Modern Defence Technology, 2020, 48(1): 100-106. | |
67 | 杜晓明, 王晓, 韩双双, 等. 一种能效最大化的一体化观测网络任务调度优化方法[J]. 系统工程理论与实践, 2021, 41(6): 1547-1555. |
Du Xiaoming, Wang Xiao, Han Shuangshuang, et al. Task Scheduling and Optimization for Integrated Observation Network With Maximum Energy Utilization Efficiency[J]. Systems Engineering-Theory & Practice, 2021, 41(6): 1547-1555. | |
68 | 苏振东, 杨瑞平, 王飞跃. 海洋环境监测平行系统优化融合[J]. 国防科技大学学报, 2020, 42(1): 170-175. |
Su Zhendong, Yang Ruiping, Wang Feiyue. Optimum Fusion of Marine Environment Monitoring Parallel System[J]. Journal of National University of Defense Technology, 2020, 42(1): 170-175. | |
69 | 刘爽. 基于免疫克隆和自适应蚁群的无人机协同规划平行系统[D]. 西安: 西安电子科技大学, 2019. |
Liu Shuang. Collaborative Planning Parallel System of UAVs Based on Immune Clone and Adaptive Ant Colony[D]. Xi'an: Xidian University, 2019. | |
70 | 许瑞明. 无人机集群智能的生成样式研究[J]. 现代防御技术, 2020, 48(5): 44-49. |
Xu Ruiming. Research on Generation Style of UAV Cluster Intelligence[J]. Modern Defence Technology, 2020, 48(5): 44-49. | |
71 | 王晓, 韩双双, 杨林瑶, 等. 基于ACP的动态网民群体运动组织建模与计算实验研究[J]. 自动化学报, 2020, 46(4): 653-669. |
Wang Xiao, Han Shuangshuang, Yang Linyao, et al. The Research on ACP-based Modeling and Computational Experiment for Cyber Movement Organizations[J]. Acta Automatica Sinica, 2020, 46(4): 653-669. | |
72 | Collins A J, Sabz Ali Pour F, Jordan C A. Past Challenges and the Future of Discrete Event Simulation[J]. The Journal of Defense Modeling and Simulation, 2023, 20(3): 351-369. |
73 | Hill R R, Tolk A, Hodson D D, et al. Open Challenges in Building Combat Simulation Systems to Support Test, Analysis and Training[C]//2018 Winter Simulation Conference (WSC). Piscataway, NJ, USA: IEEE, 2018: 3730-3741. |
74 | Lee K, Lee G, Rabelo L. A Systematic Review of the Multi-resolution Modeling (MRM) for Integration of Live, Virtual, and Constructive Systems[J]. Information, 2020, 11(10): 480. |
75 | Xu Chenren, Jiang Shuang, Luo Guojie, et al. The Case for FPGA-based Edge Computing[J]. IEEE Transactions on Mobile Computing, 2022, 21(7): 2610-2619. |
76 | Wang Xiao, Han Shuangshuang, Yang Linyao, et al. Parallel Internet of Vehicles: ACP-based System Architecture and Behavioral Modeling[J]. IEEE Internet of Things Journal, 2020, 7(5): 3735-3746. |
77 | 刘丽艳. 大规模城市交通数据的语义挖掘与可视化[D]. 长沙: 湖南师范大学, 2021. |
Liu Liyan. Semantic Mining and Visualization of Large-scale Urban Traffic Data[D]. Changsha: Hunan Normal University, 2021. |
[1] | 彭勇, 张淼, 胡越. 面向LVC训练系统的云边协同服务架构[J]. 系统仿真学报, 2023, 35(9): 1825-1836. |
[2] | 袁标, 黄友锐, 徐善永, 荣雪. 光纤二次套塑车间数字孪生系统的构建与应用[J]. 系统仿真学报, 2023, 35(9): 2011-2022. |
[3] | 吕楠, 王琪冰, 陆佳炜, 陈军统, 肖刚. 基于数字孪生的自动扶梯乘客行为监测方法研究[J]. 系统仿真学报, 2023, 35(8): 1737-1747. |
[4] | 陆涵, 张霖, 王昆玉, 黄泽军, 程鸿博, 崔晋. 装备数字孪生可信评估框架研究[J]. 系统仿真学报, 2023, 35(7): 1455-1471. |
[5] | 徐健, 宋鑫, 刘秀平, 陈博, 闫焕营. 基于数字孪生的装配机器人建模及系统实现[J]. 系统仿真学报, 2023, 35(7): 1497-1507. |
[6] | 邱志明, 李恒, 周玉芳, 卿杜政. 模拟仿真技术及其在训练领域的应用综述[J]. 系统仿真学报, 2023, 35(6): 1131-1143. |
[7] | 董泽, 姜炜, 王晓燕, 刘磊. 数字孪生在火电机组数字化转型中的应用[J]. 系统仿真学报, 2023, 35(6): 1144-1156. |
[8] | 姚舜, 胡忠志, 曹文宇, 杨佳利. 沉浸式航空发动机视景系统的设计与实现[J]. 系统仿真学报, 2023, 35(6): 1395-1404. |
[9] | 刘红彬, 申志强, 王轶泽, 邱明, 林文荣. 数字孪生模型在轴承套圈磨削加工中的应用[J]. 系统仿真学报, 2023, 35(3): 557-567. |
[10] | 杨帆, 马萍, 李伟, 杨明. 数字孪生体可信度评估过程及指标研究[J]. 系统仿真学报, 2023, 35(2): 350-358. |
[11] | 陈珊珊, 汪红志, 夏天. 磁共振成像设备的数字孪生建模关键技术与应用[J]. 系统仿真学报, 2023, 35(10): 2122-2132. |
[12] | 李伯虎, 柴旭东, 张霖, 卿杜政, 施国强, 林廷宇, 郭丽琴, 杨晨, 谷牧, 贾政轩, 公慧, 唐震. 面向智慧物联网的新型嵌入式仿真技术研究[J]. 系统仿真学报, 2022, 34(3): 419-441. |
[13] | 吴定会, 张桐瑞, 张秀丽. 扰动累积下基于数字孪生的车间重调度[J]. 系统仿真学报, 2022, 34(3): 573-583. |
[14] | 何必胜, 陈鹏, 张宏翔, 鲁工圆, 张春辉. 基于数字孪生的铁路客运站技术作业实时调度方法[J]. 系统仿真学报, 2022, 34(10): 2130-2141. |
[15] | 吴金平, 陆铭华, 薛昌友. 潜艇作战系统LVC一体化仿真设计与引擎实现[J]. 系统仿真学报, 2021, 33(7): 1647-1653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||