系统仿真学报 ›› 2024, Vol. 36 ›› Issue (8): 1944-1957.doi: 10.16182/j.issn1004731x.joss.23-0853
• 论文 • 上一篇
任乾坤1,2, 熊鑫立1,2, 刘京菊1,2, 姚倩1,2
收稿日期:
2023-07-06
修回日期:
2023-10-24
出版日期:
2024-08-15
发布日期:
2024-08-19
通讯作者:
刘京菊
第一作者简介:
任乾坤(1998-),男,硕士生,研究方向为网络空间建模与仿真。
Ren Qiankun1,2, Xiong Xinli1,2, Liu Jingju1,2, Yao Qian1,2
Received:
2023-07-06
Revised:
2023-10-24
Online:
2024-08-15
Published:
2024-08-19
Contact:
Liu Jingju
摘要:
网络数字孪生技术将数字孪生和网络空间建模与仿真技术相结合,通过深入研究网络数字孪生技术的内涵及其关键技术,可以更好地利用网络空间建模与仿真技术赋能网络空间安全未来的发展。概述了网络数字孪生的基础理论和研究现状,提出了网络数字孪生的分类法并对网络数字孪生的应用进行了总结,归纳出面向网络空间安全的网络数字孪生模型,论述了网络数字孪生内在安全问题与赋能网络安全技术的方法,展望了网络数字孪生在网络空间安全领域的应用前景与挑战机遇。
中图分类号:
任乾坤,熊鑫立,刘京菊等 . 网络空间安全中的数字孪生技术研究[J]. 系统仿真学报, 2024, 36(8): 1944-1957.
Ren Qiankun,Xiong Xinli,Liu Jingju,et al . Reserach on Digital Twins Technology in Cyberspace Security[J]. Journal of System Simulation, 2024, 36(8): 1944-1957.
表1
现有网络数字孪生架构总结
技术实现方法 | 相关文献 | 主要研究 | 优点 | 缺点与不足 |
---|---|---|---|---|
云计算 | [ | 数据所有者从物理资产中生成数据并将其发送到云服务器,在虚拟空间中模拟数字孪生,将模拟结果与所有者共享,用户访问数据可以不受时间和地点的约束 | 提供按需服务、计算资源、无处不在的网络接入,拥有高性能的计算和存储服务 | 很难找到一种安全的方式来共享数据、存在隐私泄露问题 |
边缘计算 | [ | 将数字孪生与边缘计算结合,建立一个数字孪生授权的边缘网络模型,解决了自适应边缘关联问题 | 减少了系统延迟,提高用户的实用性,解决了终端用户和服务器之间的不可靠、远距离通信的问题 | 边缘网络中接入点多且分散,边缘终端的防护能力不足,数据量大、网络不稳定等 |
网络切片 | [ | 数字孪生技术通过创建支持切片的网络虚拟表示,以数字方式模拟其行为并预测时变性能,可以捕获不同切片之间的关系,并监控不同网络切片的端到端实时数据 | 对网络的安全状态进行分析和预测,对安全策略进行模拟、验证和优化,能够预测一些未知的安全问题 | 配置切片安全功能涉及到对大量网络功能和资源的管理和编排,动态管理的成本和复杂性相对较高,难以找到最佳的网络威胁解决方案 |
区块链 | [ | 基于区块链的数据安全共享架构应用于数字孪生物联网系统,解决了物理系统、数字孪生系统和物联网应用系统之间的数据安全传输问题 | 拥有一个安全且保护用户隐私的身份验证协议,允许用户验证数据的安全性 | 无法抵御离线密码攻击、匿名属性攻击、临时信息攻击等各种攻击行为 |
知识图谱 | [ | 提出了一种基于知识图谱构建的数字孪生网络,用知识图谱描述复杂的数字孪生网络,不仅可以表示网络的物理属性,而且可以从不同的维度挖掘网络关系 | 增强了数字孪生内部链接和引用、知识补全、错误检测、集体推理和语义查询能力,可以基于历史数据和推理结果使用知识图谱进行决策 | 孪生数据之间的关系难以确立,仅仅通过知识图谱很难做到数据的全面映射,且对于数据之间的关系没有判定过程 |
云边协同 | [ | 基于数字孪生的云边缘协同架构描述了数字孪生驱动下实时可视化监控和云边缘协同控制的关键技术,验证了基于数字孪生的云边协同系统的有效性 | 解决了设备层与云端直接通信时传输实时性差、带宽不足、安全性低的问题 | 仅仅考虑了单一设备使用,没有利用多个设备同时构建孪生模型,效率较低 |
1 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
Tao Fei, Liu Weiran, Liu Jianhua, et al. Digital Twin and Its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. | |
2 | Botín-Sanabria Diego M, Mihaita A S, Rodrigo E Peimbert-García, et al. Digital Twin Technology Challenges and Applications: A Comprehensive Review[J]. Remote Sensing, 2022, 14(6): 1335. |
3 | Chen Danyang, Yang Hongwei, Zhou Cheng, et al. Classification, Building and Orchestration Management of Digital Twin Network Models[C]//2022 IEEE 22nd International Conference on Communication Technology (ICCT). Piscataway: IEEE, 2022: 1843-1846. |
4 | Pirbhulal Sandeep, Abie Habtamu, Shukla Ankur. Towards a Novel Framework for Reinforcing Cybersecurity Using Digital Twins in IoT-based Healthcare Applications[C]//2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). Piscataway: IEEE, 2022: 1-5. |
5 | Almasan Paul, Ferriol-Galmés Miquel, Paillisse Jordi, et al. Network Digital Twin: Context, Enabling Technologies, and Opportunities[J]. IEEE Communications Magazine, 2022, 60(11): 22-27. |
6 | Tao Fei, Zhang He, Liu Ang, et al. Digital Twin in Industry: State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415. |
7 | Dong Rui, She Changyang, Hardjawana W, et al. Deep Learning for Hybrid 5G Services in Mobile Edge Computing Systems: Learn From a Digital Twin[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4692-4707. |
8 | Yu Quan, Ren Jing, Fu Yinjin, et al. Cybertwin: An Origin of Next Generation Network Architecture[J]. IEEE Wireless Communications, 2019, 26(6): 111-117. |
9 | Yu Quan, Ren Jing, Zhou Haibo, et al. A Cybertwin Based Network Architecture for 6G[C]//2020 2nd 6G Wireless Summit (6G SUMMIT). Piscataway: IEEE, 2020: 1-5. |
10 | Thakur Garima, Kumar Pankaj, Deepika, et al. An Effective Privacy-preserving Blockchain-assisted Security Protocol for Cloud-based Digital Twin Environment[J]. IEEE Access, 2023, 11: 26877-26892. |
11 | Wang Hongliang, Jin Guoliang. Digital Twin Model Construction and Management Method of Workshop Based on Cloud Platform[C]//2022 11th International Conference of Information and Communication Technology (ICTech)). Piscataway: IEEE, 2022: 28-32. |
12 | Durgin G D, Varner M A, Patwari N, et al. Digital Spectrum Twinning for Next-generation Spectrum Management and Metering[C]//2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway: IEEE, 2022: 1-6. |
13 | Alam K M, El Saddik A. C2PS: A Digital Twin Architecture Reference Model for the Cloud-based Cyber-physical Systems[J]. IEEE Access, 2017, 5: 2050-2062. |
14 | Zhang Gongtao, MacCarthy B L, Ivanov Dmitry. The Cloud, Platforms, and Digital Twins-enablers of the Digital Supply Chain[M]//MacCarthy B L, Dmitry Ivanov. The Digital Supply Chain. London: Elsevier, 2022: 77-91. |
15 | Lu Yunlong, Huang Xiaohong, Zhang Ke, et al. Communication-efficient Federated Learning and Permissioned Blockchain for Digital Twin Edge Networks[J]. IEEE Internet of Things Journal, 2021, 8(4): 2276-2288. |
16 | Lu Yunlong, Maharjan Sabita, Zhang Yan. Adaptive Edge Association for Wireless Digital Twin Networks in 6G[J]. IEEE Internet of Things Journal, 2021, 8(22): 16219-16230. |
17 | Sun Yue, Xu Xiaotian, Qiang Ren, et al. Research on Security Management and Control of Power Grid Digital Twin Based on Edge Computing[C]//2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). Piscataway: IEEE, 2021: 606-610. |
18 | Lu Yunlong, Huang Xiaohong, Zhang Ke, et al. Communication-efficient Federated Learning and Permissioned Blockchain for Digital Twin Edge Networks[J]. IEEE Internet of Things Journal, 2021, 8(4): 2276-2288. |
19 | Tang Fengxiao, Chen Xuehan, Tiago Koketsu Rodrigues, et al. Survey on Digital Twin Edge Networks (DITEN) Toward 6G[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1360-1381. |
20 | Zhang Zhenyu, Zhou Huan, Zhao Liang, et al. Digital Twin Assisted Computation Offloading and Service Caching in Mobile Edge Computing[C]//2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). Piscataway: IEEE, 2022: 1296-1297. |
21 | Zhang Ke, Cao Jiayu, Maharjan Sabita, et al. Digital Twin Empowered Content Caching in Social-aware Vehicular Edge Networks[J]. IEEE Transactions on Computational Social Systems, 2021, 9(1): 239-251. |
22 | Lu Yunlong, Huang Xiaohong, Zhang Ke, et al. Low-latency Federated Learning and Blockchain for Edge Association in Digital Twin Empowered 6G Networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 5098-5107. |
23 | Xu Xiaolong, Shen Bowen, Ding Sheng, et al. Service Offloading with Deep Q-network for Digital Twinning-empowered Internet of Vehicles in Edge Computing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 1414-1423. |
24 | Naeem F, Kaddoum G, Tariq Muhammad. Digital Twin-empowered Network Slicing in B5G Networks: Experience-driven Approach[C]//2021 IEEE Globecom Workshops (GC Wkshps). Piscataway: IEEE, 2021: 1-5. |
25 | Granelli Fabrizio, Capraro Riccardo, Lorandi Michela, et al. Evaluating a Digital Twin of an IoT Resource Slice: An Emulation Study Using the ELIoT Platform[J]. IEEE Networking Letters, 2021, 3(3): 147-151. |
26 | Yang Hongwei, Li Yang, Yao Kehan, et al. A Systematic Network Traffic Emulation Framework for Digital Twin Network[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway: IEEE, 2021: 94-97. |
27 | Wang Haozhe, Wu Yulei, Min Geyong, et al. A Graph Neural Network-based Digital Twin for Network Slicing Management[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 1367-1376. |
28 | Zheng Qiuhong, Wang Jinghan, Shen Yun, et al. Blockchain Based Trustworthy Digital Twin in the Internet of Things[C]//2022 International Conference on Information Processing and Network Provisioning (ICIPNP). Piscataway: IEEE, 2022: 152-155. |
29 | Pittaras Iakovos, Polyzos George C. Secure and Efficient Web of Things Digital Twins Using Permissioned Blockchains[C]//2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). Piscataway: IEEE, 2022: 1-5. |
30 | Dong Wenyu, Yang Bo, Wang Ke, et al. A Dual Blockchain Framework to Enhance Data Trustworthiness in Digital Twin Network[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway: IEEE, 2021: 144-147. |
31 | Takahashi Keisuke, Kanai Kenji, Nakazato Hidenori. Performance Evaluation of Blockchains Towards Sharing of Digital Twins[C]//2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech). Piscataway: IEEE, 2022: 128-129. |
32 | Zhihan Lü, Lou Ranran. Edge-fog-cloud Secure Storage with Deep-learning-assisted Digital Twins[J]. IEEE Internet of Things Magazine, 2022, 5(2): 36-40. |
33 | Chang Xiaotian, Yang Chungang, Wang Hao, et al. KID: Knowledge Graph-enabled Intent-driven Network with Digital Twin[C]//2022 27th Asia Pacific Conference on Communications (APCC). Piscataway: IEEE, 2022: 272-277. |
34 | Braun Dominik, Müller Timo, Sahlab Nada, et al. A Graph-based Knowledge Representation and Pattern Mining Supporting the Digital Twin Creation of Existing Manufacturing Systems[C]//2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE, 2022: 1-4. |
35 | Guo Liang, Cheng Yunxi, Zhang Yu, et al. Development of Cloud-edge Collaborative Digital Twin System for FDM Additive Manufacturing[C]//2021 IEEE 19th International Conference on Industrial Informatics (INDIN). Piscataway: IEEE, 2021: 1-6. |
36 | Xue Yuying, Shen Yun, Duan Huibin, et al. Digital Twin System for Transformer Station Based on Cloud-edge Collaboration Architecture[C]//2022 International Conference on Information Processing and Network Provisioning (ICIPNP). Piscataway: IEEE, 2022: 111-115. |
37 | Lai Guojun, Zhang Xiuhua, Lu Cheng, et al. The Architecture and Key Technologies of the Digital Twin System of Helicopter Based on Cloud-edge-end Integration[C]//2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). Piscataway, 2022: 1069-1072. |
38 | 孙滔, 周铖, 段晓东, 等. 数字孪生网络(DTN): 概念、架构及关键技术[J]. 自动化学报, 2021, 47(3): 569-582. |
Sun Tao, Zhou Cheng, Duan Xiaodong, et al. Digital Twin Network (DTN): Concepts, Architecture, and Key Technologies[J]. Acta Automatica Sinica, 2021, 47(3): 569-582. | |
39 | Zhu Yanhong, Chen Danyang, Zhou Cheng, et al. A Knowledge Graph Based Construction Method for Digital Twin Network[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway: IEEE, 2021: 362-365. |
40 | 杨俊皓. 大规模数字孪生网络拓扑快速构建方法研究[D]. 成都: 电子科技大学, 2022. |
Yang Junhao. Research on Fast Topology Construction Method of Large-scale Digital Twin Networks[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
41 | 贝太周, 施冬明, 李方舟, 等. 基于数字孪生的智能电网安全评估方案研究[J]. 山东电力技术, 2022, 49(6): 25-30, 80. |
Bei Taizhou, Shi Dongming, Li Fangzhou, et al. Research on Security Assessment Scheme to Smart Grid Based on Digital Twin[J]. Shandong Electric Power, 2022, 49(6): 25-30, 80. | |
42 | 王奇奇, 莫皓颖, 户江民, 等. 基于数字孪生的网络优化方法研究[J]. 电声技术, 2021, 45(1): 52-54. |
Wang Qiqi, Mo Haoying, Hu Jiangmin, et al. Research on Network Optimization Method Based on Digital Twin[J]. Audio Engineering, 2021, 45(1): 52-54. | |
43 | 李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报, 2019, 31(3): 385-392. |
Li Xin, Liu Xiu, Wan Xinxin. Overview of Digital Twins Application and safe Development[J]. Journal of System Simulation, 2019, 31(3): 385-392. | |
44 | 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007. |
Zhang Lin, Lu Han. Discussing Digital Twin from of Modeling and Simulation[J]. Journal of System Simulation, 2021, 33(5): 995-1007. | |
45 | Shu Min, Sun Wanfei, Zhang Jing, et al. Digital-twin-enabled 6G Network Autonomy and Generative Intelligence: Architecture, Technologies and Applications[J]. Digital Twin, 2022, 2: 16. |
46 | Yang Hongwei, Li Yang, Yao Kehan, et al. A Systematic Network Traffic Emulation Framework for Digital Twin Network[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway: IEEE, 2021: 94-97. |
47 | Zhao Zhenhao, Wang Feng, Gao Yanchao, et al. Design of a Digital Twin for Spacecraft Network System[C]//2022 IEEE 5th International Conference on Electronics and Communication Engineering (ICECE). Piscataway: IEEE, 2022: 46-50. |
48 | Polverini Marco, Lavacca Francesco G, Galán-Jiménez Jaime, et al. Digital Twin Manager: A Novel Framework to Handle Conflicting Network Applications[C]//2022 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). Piscataway: IEEE, 2022: 85-88. |
49 | Wei Zhiyu, Wang Songtao, Li Dan, et al. Data-driven Routing: A Typical Application of Digital Twin Network[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway: IEEE, 2021: 1-4. |
50 | Tzanis Nikolaos, Andriopoulos Nikolaos, Magklaras Aris, et al. A Hybrid Cyber Physical Digital Twin Approach for Smart Grid Fault Prediction[C]//2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). Piscataway: IEEE, 2020: 393-397. |
51 | Centomo Stefano, Dall'Ora Nicola, Fummi Franco. The Design of a Digital-twin for Predictive Maintenance[C]//2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE, 2020: 1781-1788. |
52 | Bagrodia R. Using Network Digital Twins to Improve Cyber Resilience of Missions[J]. The Journal of Defense Modeling and Simulation, 2023, 20(1): 97-106. |
53 | Pokhrel Abhishek, Katta Vikash, Colomo-Palacios Ricardo. Digital Twin for Cybersecurity Incident Prediction: A Multivocal Literature Review[C]//Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. New York: Association for Computing Machinery, 2020: 671-678. |
54 | Mark Van Den Brand, Cleophas Loek, Gunasekaran Raghavendran, et al. Models Meet Data: Challenges to Create Virtual Entities for Digital Twins[C]//2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). Piscataway: IEEE, 2021: 225-228. |
55 | 马宇威, 杜海涛, 粟栗, 等. 基于数字孪生的5G网络安全推演[J]. 计算机工程与应用, 2024, 60(5): 291-298. |
Ma Yuwei, Du Haitao, Su Li, et al. 5G Network Security Deduction Based on Digital Twin[J]. Computer Engineering and Applications, 2024, 60(5): 291-298. | |
56 | 方滨兴, 贾焰, 李爱平, 等. 网络空间靶场技术研究[J]. 信息安全学报, 2016, 1(3): 1-9. |
Fang Binxing, Jia Yan, Li Aiping, et al. Cyber Ranges: State-of-the-art and Research Challenges[J]. Journal of Information Security, 2016, 1(3): 1-9. | |
57 | Holmes D, Papathanasaki Maria, Maglaras L, et al. Digital Twins and Cyber Security-solution or Challenge?[C]//2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM). Piscataway: IEEE, 2021: 1-8. |
58 | Hearn M, Rix S. Cybersecurity Considerations for Digital Twin Implementations[J]. IIC Journal of Innovation, 2019, 10: 107-113. |
59 | Nouma S E, Yavuz A A. Post-quantum Hybrid Digital Signatures with Hardware-support for Digital Twins[EB/OL]. (2023-05-20) [2023-06-20]. . |
60 | Dietz Marietheres, Putz Benedikt, Pernul Günther. A Distributed Ledger Approach to Digital Twin Secure Data Sharing[C]//Data and Applications Security and Privacy XXXIII. Cham: Springer International Publishing, 2019: 281-300. |
61 | Liu Jun, Zhang Lei, Li Chunlin, et al. Blockchain-based Secure Communication of Intelligent Transportation Digital Twins System[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22630-22640. |
62 | Suhail S, Saif Ur Rehman Malik, Jurdak R, et al. Towards Situational Aware Cyber-physical Systems: A Security-enhancing Use Case of Blockchain-based Digital Twins[J]. Computers in Industry, 2022, 141: 103699. |
63 | 郑轶, 胡志锋, 王路路, 等. 信息域与物理域融合的孪生仿真网络靶场[J]. 信息安全研究, 2022, 7(E1): 98. |
Zheng Yi, Hu Zhifeng, Wang Lulu, et al. Twin Simulation Network Target Range with Fusion of Information Domain and Physical Domain[J]. Information Security Research, 2022, 7(E1): 98. | |
64 | 郭夙昌, 黄金涛, 邓雷升, 等. 网络安全数字孪生研究[J]. 信息安全与通信保密, 2023(6): 29-39. |
Guo Suchang, Huang Jintao, Deng Leisheng, et al. Study on Digital Twins of Cyber Security[J]. Information Security and Communications Privacy, 2023(6): 29-39. | |
65 | Gao Chuanchao, Park H, Easwaran A. An Anomaly Detection Framework for Digital Twin Driven Cyber-physical Systems[C]//Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems. New York: Association for Computing Machinery, 2021: 44-54. |
66 | Masi Massimiliano, Giovanni Paolo Sellitto, Aranha Helder, et al. Securing Critical Infrastructures with a Cybersecurity Digital Twin[J]. Software and Systems Modeling, 2023, 22(2): 689-707. |
[1] | 曹宇, 李杰, 王芳, 刘智翔, 汪雪良. 基于仿真数据库的深潜球壳应力场数字孪生方法[J]. 系统仿真学报, 2024, 36(8): 1764-1779. |
[2] | 雷震, 刘宇华, 丁凯, 陈浩祥, 李东伟. 数字孪生驱动的射电望远镜结构热变形补偿系统[J]. 系统仿真学报, 2024, 36(8): 1869-1883. |
[3] | 李颖, 高岚, 朱志松. 面向智能制造场景的机器人数字孪生建模与控制[J]. 系统仿真学报, 2024, 36(7): 1536-1545. |
[4] | 党宏杰, 余文广, 杨华晖. 基于数字孪生与平行试验的装备体系试验鉴定数字化应用[J]. 系统仿真学报, 2024, 36(7): 1729-1736. |
[5] | 王红军, 林俊强, 邹湘军, 张坡, 周铭轩, 邹伟锐, 唐昀超, 罗陆锋. 基于数字孪生的果园虚拟交互系统构建[J]. 系统仿真学报, 2024, 36(6): 1493-1508. |
[6] | 梁宏涛, 孔翎超, 刘国柱, 董文轩, 刘香怡. 融合数字孪生的风电机组故障检测ASL-CatBoost方法[J]. 系统仿真学报, 2024, 36(4): 873-887. |
[7] | 胡阳, 王蔚然, 房方, 宋子秋, 许昱涵, 刘吉臻. 风电机组运行动态数字孪生建模及半物理仿真[J]. 系统仿真学报, 2024, 36(3): 636-648. |
[8] | 赵莹莹, 董普森, 朱天晨, 李凡, 苏运, 邰振赢, 孙庆赟, 凡航. 面向电网拓扑调度仿真的采样效率优化方法研究[J]. 系统仿真学报, 2024, 36(2): 283-295. |
[9] | 阴艳超, 冯嘉胜, 易斌, 李旺, 尹庆文. 面向流程制造的数字孪生车间可视化监控系统研究[J]. 系统仿真学报, 2024, 36(1): 120-130. |
[10] | 赵彦博, 蔡远利, 胡怀中. 基于递推子空间的机组数字孪生模型预测精度优化方法[J]. 系统仿真学报, 2024, 36(1): 195-202. |
[11] | 钟竞辉, 林育钿, 李稳强, 蔡文桐. 基于数字孪生的机场人群智慧管控技术[J]. 系统仿真学报, 2024, 36(1): 27-38. |
[12] | 袁标, 黄友锐, 徐善永, 荣雪. 光纤二次套塑车间数字孪生系统的构建与应用[J]. 系统仿真学报, 2023, 35(9): 2011-2022. |
[13] | 吕楠, 王琪冰, 陆佳炜, 陈军统, 肖刚. 基于数字孪生的自动扶梯乘客行为监测方法研究[J]. 系统仿真学报, 2023, 35(8): 1737-1747. |
[14] | 陆涵, 张霖, 王昆玉, 黄泽军, 程鸿博, 崔晋. 装备数字孪生可信评估框架研究[J]. 系统仿真学报, 2023, 35(7): 1455-1471. |
[15] | 徐健, 宋鑫, 刘秀平, 陈博, 闫焕营. 基于数字孪生的装配机器人建模及系统实现[J]. 系统仿真学报, 2023, 35(7): 1497-1507. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||