系统仿真学报 ›› 2024, Vol. 36 ›› Issue (8): 1929-1943.doi: 10.16182/j.issn1004731x.joss.23-0780

• 论文 • 上一篇    

启发式优化算法的GPU并行加速框架

王东杰, 温思歆, 孟万植, 吴迪   

  1. 大连理工大学 控制科学与工程学院,辽宁 大连 116024
  • 收稿日期:2023-06-28 修回日期:2023-10-08 出版日期:2024-08-15 发布日期:2024-08-19
  • 通讯作者: 温思歆
  • 第一作者简介:王东杰(1999-),男,硕士生,研究方向为航空发动机并行性能寻优。
  • 基金资助:
    国家自然科学基金(61890920)

GPU Parallel Acceleration Framework for Heuristic Optimization Algorithm

Wang Dongjie, Wen Sixin, Meng Wanzhi, Wu Di   

  1. School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2023-06-28 Revised:2023-10-08 Online:2024-08-15 Published:2024-08-19
  • Contact: Wen Sixin

摘要:

为解决启发式优化算法计算量大、耗时长的缺点,使用图形处理单元(GPU)以及统一计算架构(compute unified device architecture,CUDA)对启发式优化算法进行并行化。提出了一种针对启发式优化算法的GPU并行框架,设计了具有并行逻辑结构的信息交互框架、算法并行优化策略,解决了信息交互的逻辑结构在串、并行中的相异性问题,该框架可并行化各类启发式优化算法,具有一般性与高效性。为验证该框架的有效性,利用并行框架对5种常见启发式优化算法进行并行化,给出了多个测试函数下GPU并行计算与CPU串行计算的对比结果,其中差分进化算法、哈里斯鹰优化算法、灰狼优化算法、鲸鱼优化算法在种群维度为5 000时,分别加速高达179.1、178.6、74.3、358.2倍,同时保证了结果的准确性,表明所设计并行框架的高效性与实用性。

关键词: 启发式优化算法, GPU并行, CUDA模型, 并行框架, 信息交互

Abstract:

Heuristic optimization algorithm are a type of algorithm that uses large-scale populations for iterative calculations and are widely used to solve all kinds of complex optimization problems. However, such algorithm have the disadvantages of large calculation and long time consumption. To solve this problem, heuristic optimization algorithms are parallelized using GPU and compute unified device architecture (CUDA) to substantially improve computational efficiency. A GPU parallel framework for heuristic optimization algorithm is proposed, which designs an information interaction framework and algorithm parallel optimization strategy with a parallel logical structure, and solves the problem of the dissimilarity of the logical structure of information interaction in series and parallel, this framework can parallelize various heuristic optimization algorithms with generality and efficiency. In order to verify the effectiveness of this framework, five common heuristic optimization algorithms are parallelized by using the parallel framework, and the comparison results of GPU parallel computation and CPU serial computation under different multiple test functions are given. in which DE, HHO, GWO, and WOA reach the acceleration ratio of 179.1, 178.6, 74.3 and 358.2 times respectively when the population dimension is 5000, while ensuring the accuracy of the results, which verifies the high effectiveness and practicability of the designed parallel framework.

Key words: heuristic optimization algorithm, GPU parallelism, CUDA model, parallel framework, information exchange

中图分类号: