Journal of System Simulation ›› 2026, Vol. 38 ›› Issue (1): 112-124.doi: 10.16182/j.issn1004731x.joss.25-0824
• Papers • Previous Articles Next Articles
Zou Changjun, Ge Zhiyu, Zhong Chenxi
Received:2025-09-01
Revised:2025-10-15
Online:2026-01-18
Published:2026-01-28
CLC Number:
Zou Changjun, Ge Zhiyu, Zhong Chenxi. Spatio-temporal Swin Transformer-based Flow-solid Coupling Interaction Sequence Image Prediction Network[J]. Journal of System Simulation, 2026, 38(1): 112-124.
Table 1
Dataset
| scens | abbreviation | example | sample size | size | format | resolution |
|---|---|---|---|---|---|---|
| Simple stationary solid | SSS | ![]() | 3 000 | 351 M | PNG | 256×256 |
| Complex stationary solids | CSS | ![]() | 2 000 | 1.1 G | PNG | 512×512 |
| Fine motor skills | FMS | ![]() | 2 500 | 12.7 G | PNG | 1 024×1 024 |
| Simple motion solids | SMS | ![]() | 3 000 | 346 M | PNG | 256×256 |
| Complex motion solids | CMS | ![]() | 2 000 | 1.1 G | PNG | 512×512 |
Table 2
Quantitative comparison of different methods in image prediction on different datasets
| Method | SSS | CSS | FMS | SMS | CMS | Param | FLOPs | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |||
| ResNet | 30.423 79 | 0.925 73 | 30.459 19 | 0.944 72 | 26.399 58 | 0.830 61 | 27.917 62 | 0.891 05 | 27.189 96 | 0.889 57 | 113 M | 0.63 G |
| UNet | 41.516 35 | 0.976 63 | 42.839 81 | 0.990 65 | 37.907 98 | 0.974 28 | 40.172 34 | 0.979 38 | 35.082 20 | 0.961 85 | 118 M | 1.78 G |
| ViT | 24.371 35 | 0.851 09 | 39.475 74 | 0.989 30 | 32.812 23 | 0.954 65 | 22.617 29 | 0.839 15 | 29.341 60 | 0.939 72 | 124 M | 0.61 G |
| Swin | 42.294 05 | 0.981 35 | 43.186 84 | 0.990 00 | 36.652 52 | 0.963 81 | 39.618 30 | 0.976 09 | 34.041 74 | 0.942 67 | 147 M | 0.14 G |
| LSTM | 40.966 93 | 0.976 29 | 37.071 56 | 0.981 36 | 35.872 86 | 0.959 57 | 41.137 11 | 0.982 39 | 33.064 14 | 0.954 74 | 118 M | 0.61 G |
| Ours | 43.474 31 | 0.984 29 | 43.353 44 | 0.991 35 | 38.200 63 | 0.977 36 | 41.938 44 | 0.981 18 | 35.415 44 | 0.957 06 | 149 M | 0.63 G |
| [1] | Wang Haixin, Cao Yadi, Huang Zijie, et al. Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey[EB/OL]. (2024-08-22) [2025-07-26]. . |
| [2] | Lino M, Fotiadis S, Bharath A A, et al. Current and Emerging Deep-learning Methods for the Simulation of Fluid Dynamics[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479(2275): 20230058. |
| [3] | Cuomo S, Di Cola V S, Giampaolo F, et al. Scientific Machine Learning Through Physics-informed Neural Networks: Where We Are and What's Next[J]. Journal of Scientific Computing, 2022, 92(3): 88. |
| [4] | Lucas B D, Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1981: 674-679. |
| [5] | Box G E P, Jenkins G M. Time Series Analysis: Forecasting and Control[M]. Oakland: Holden-day, 1970. |
| [6] | Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. |
| [7] | Cortes C, Vapnik V. Support-vector Networks[J]. Machine Learning, 1995, 20(3): 273-297. |
| [8] | Rumelhart D E, Hinton G E, Williams R J. Learning Representations by Back-propagating Errors[J]. Nature, 1986, 323(6088): 533-536. |
| [9] | Lecun Y, Bottou L, Bengio Y, et al. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
| [10] | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-assisted Intervention – MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
| [11] | Elman J L. Finding Structure in Time[J]. Cognitive Science, 1990, 14(2): 179-211. |
| [12] | Hochreiter S, Schmidhuber J. Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
| [13] | Cho K, Van Merrienboer B, Bahdanau D, et al. On the Properties of Neural Machine Translation: Encoder-decoder Approaches[EB/OL]. (2014-10-07) [2025-07-26]. . |
| [14] | Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810. |
| [15] | Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
| [16] | Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
| [17] | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale[EB/OL]. (2021-06-03) [2025-07-26]. . |
| [18] | Liu Ze, Lin Yutong, Cao Yue, et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows[EB/OL]. (2021-08-17) [2025-07-26]. . |
| [19] | Geng Shaoyang, Zhai Shuo, Li Chengyong. Swin Transformer Based Transfer Learning Model for Predicting Porous Media Permeability from 2D Images[J]. Computers and Geotechnics, 2024, 168: 106177. |
| [20] | Ruan Weilin, Zhong Siru, Wen Haomin, et al. Vision-enhanced Time Series Forecasting via Latent Diffusion Models[EB/OL]. (2025-02-16) [2025-07-26]. . |
| [21] | Guan Shanyan, Deng Huayu, Wang Yunbo, et al. NeuroFluid: Fluid Dynamics Grounding with Particle-driven Neural Radiance Fields[C]//Proceedings of the 39th International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2022: 7919-7929. |
| [22] | Zhu M, Bazaga A, Liò P. FLUID-LLM: Learning Computational Fluid Dynamics with Spatiotemporal-aware Large Language Models[EB/OL]. (2024-06-06) [2025-07-26]. . |
| [23] | Zhang Bailing. Koopman Framework with Self-supervised Spectral Alignment for Multi-domain Time-series Modeling and Prediction[J]. Neurocomputing, 2025, 652: 131109. |
| [24] | Raissi M, Perdikaris P, Karniadakis G E. Physics-informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
| [25] | 肖祥云, 杨旭波. 基于物理及数据驱动的流体动画研究[J]. 软件学报, 2020, 31(10): 3251-3265. |
| Xiao Xiangyun, Yang Xubo. Physically-based and Data-driven Fluid Simulation Research[J]. Journal of Software, 2020, 31(10): 3251-3265. | |
| [26] | Li Ao, Zhang Wanshun, Zhang Xiao, et al. A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-scale Hydrodynamic Prediction[J]. Water, 2024, 16(5): 625. |
| [27] | Foster N, Fedkiw R. Practical Animation of Liquids[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: Association for Computing Machinery, 2001: 23-30. |
| [28] | Stam J. Stable Fluids[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. USA: ACM Press/Addison-wesley Publishing Co., 1999: 121-128. |
| [29] | Fedkiw R, Stam J, Jensen H W. Visual Simulation of Smoke[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: Association for Computing Machinery, 2001: 15-22. |
| [30] | Müller M, Charypar D, Gross M. Particle-based Fluid Simulation for Interactive Applications[C]//Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Goslar: Eurographics Association, 2003: 154-159. |
| [1] | Wang Bingheng, Liu Tingrui, Yang Fan, Zhang Huan, Li Wei, Ma Ping, Yang Ming. Research on Requirements and Methods for Intelligent Assessment of Simulation Credibility [J]. Journal of System Simulation, 2025, 37(7): 1710-1722. |
| [2] | Chen Kun, Chen Liang, Xie Jiming, Liu Fengbo, Chen Taixiong, Wei Lukuan. Simulation Study on Adaptive Signal Control of Deformed Intersection Based on LSTM-GNN [J]. Journal of System Simulation, 2025, 37(6): 1343-1351. |
| [3] | Jiang Dawei, Dong Yangyang, Zhang Lidong, Lu Xiao, Dong Chunxi. Research on Air Target Threat Assessment Technology Based on Deep Learning [J]. Journal of System Simulation, 2025, 37(3): 791-802. |
| [4] | Wang Xiao, Li Xiangyang, Liang Feng, Zhang Zhili. Research on Infrared and Visible Light Fusion Method Based on ResNet-50 and Laplacian Filtering [J]. Journal of System Simulation, 2025, 37(12): 3202-3211. |
| [5] | Hu yang, Li Zihao, Fu Deyi, Song Ziqiu, Fang Fang, Liu Jizhen. Deep Learning Modeling of Multi-scale Characteristics of Large-scale Wind Turbine Gearbox [J]. Journal of System Simulation, 2025, 37(10): 2454-2468. |
| [6] | Gu Hao, Wang Jiayu, Xiong Weili. Soft Sensor Modeling Based on Improved Transformer in Dual-stream Framework [J]. Journal of System Simulation, 2025, 37(10): 2594-2604. |
| [7] | Guo Yecai, Tong Shuang. A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification [J]. Journal of System Simulation, 2024, 36(9): 2065-2074. |
| [8] | Liu Zesen, Bi Sheng, Guo Chuanhong, Wang Yankui, Dong Min. Deep Learning Based Local Path Planning Method for Moving Robots [J]. Journal of System Simulation, 2024, 36(5): 1199-1210. |
| [9] | Wei Jinyang, Wang Keping, Yang Yi, Fei Shumin. Incremental Image Dehazing Algorithm Based on Multiple Transfer Attention [J]. Journal of System Simulation, 2024, 36(4): 969-980. |
| [10] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
| [11] | Li Chen, He Ming, Dong Chen, Li Wei. Action Recognition Model of Directed Attention Based on Cosine Similarity [J]. Journal of System Simulation, 2024, 36(1): 67-82. |
| [12] | Zhang Fengquan, Cao Duo, Ma Xiaohan, Chen Baijun, Zhang Jiangxiao. Style Transfer Network for Generating Opera Makeup Details [J]. Journal of System Simulation, 2023, 35(9): 2064-2076. |
| [13] | Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan. Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section [J]. Journal of System Simulation, 2023, 35(1): 146-157. |
| [14] | Dayong Zhang, Jingyu Yang, Xi Wu. Research on Intelligent Prediction Method of Wargaming Air Mission [J]. Journal of System Simulation, 2023, 35(1): 212-220. |
| [15] | Huimin Chai, Yong Zhang, Xinyue Li, Yanan Song. Aerial Target Threat Assessment Method based on Deep Learning [J]. Journal of System Simulation, 2022, 34(7): 1459-1467. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||