Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (7): 1649-1664.doi: 10.16182/j.issn1004731x.joss.25-0511
• Invited Reviews • Previous Articles
Wu Jianping1,2,3, Li Guanzhou1, Zhao Shuai4, Huang Ling5
Received:
2025-06-04
Revised:
2025-06-11
Online:
2025-07-18
Published:
2025-07-30
Contact:
Li Guanzhou
CLC Number:
Wu Jianping, Li Guanzhou, Zhao Shuai, Huang Ling. Intelligent Transition of Automotive Industry Driven by Autonomous Driving Simulation Testing Technology[J]. Journal of System Simulation, 2025, 37(7): 1649-1664.
Table 1
Comparison of different autonomous driving testing paradigms
方法 | 测试效率 | 硬件成本 | 场景保真度 | 适用开发阶段 | 缺陷覆盖度 |
---|---|---|---|---|---|
数学建模 | 纯模型计算,场景生成与迭代速度最快 | 仅需通用计算资源,无专用硬件需求 | 高度抽象简化模型,难以完全还原环境噪声及复杂互动行为 | 算法原型 | 主要覆盖算法逻辑和动力学模型缺陷 |
虚拟场景 | 基于仿真软件,场景生成与测试执行速度快,易于大规模并行 | 场景构建与渲染计算资源要求相对更高,无需实车或大部分硬件 | 可通过精细建模(车辆动力学、传感器模型、环境渲染)模拟复杂场景和物理效应 | 感知系统 | 能实现对车辆各功能的测试,但对硬件故障和整车执行方面的问题覆盖有限 |
硬件在环 | 需集成真实硬件与软件仿真,测试配置与执行速度较纯仿真慢 | 需使用真实被测件、专业硬件接口及配套设备等 | 在虚拟测试基础上,允许接入被测车辆组件的真实响应信号 | 控制器验证 | 能发现控制器软硬件集成缺陷和控制逻辑错误,但对整车级执行和真实环境交互覆盖不足 |
混合现实 | 需协调实车在真实场地运行与虚拟交通流注入,测试准备与执行复杂较耗时 | 需使用实车、高精度定位系统、低延时通讯系统等 | 车辆在真实场地中运行,融合高度逼真的虚拟交通流,最接近实车道路测试效果 | HMI评估 | 结合真实车辆动态和虚拟场景,能对自动驾驶各类缺陷较实现较完整覆盖,是实路测试的重要补充 |
Table 2
Comparison of existing autonomous driving simulators
仿真类别 | 仿真器名称 | 开发者 | 功能特色 | 是否支持LLM |
---|---|---|---|---|
车辆动力学仿真 | CarSim | 密歇根大学交通研究所 | 提供高精度的车辆动力学模型 | 否 |
CarMaker | IPG Automotive | 提供丰富的车辆动力学模型,支持HIL测试 | 否 | |
场景环境仿真 | AirSim | 微软 | 最初为无人机设计,基于虚幻引擎,可为自动驾驶等智能化系统提供高度的多传感器仿真;提供ROS集成 | 否 |
PreScan | 西门子 | 提供高度真实且可定制的场景搭建,支持丰富的传感器类别,支持HIL测试 | 否 | |
LGSVL | LG | 基于Unity引擎,支持多传感器融合和与Apollo/Autoware等开源自动驾驶系统实现高效衔接 | 否 | |
rFpro | 英国rFpro | 毫米级路面扫描建模,支持摄像头与激光雷达仿真,可与SUMO/VISSIM等交通流仿真衔接 | 否 | |
MetaDrive | 香港中文大学&UCLA | 允许通过程序生成的方式快速生成大量仿真路网 | 否 | |
RoadRunner | MathWorks | 可用于高精地图和3D场景建模,与MATLAB/Simulink高度集成 | 否 | |
交通流仿真 | SUMO | 德国宇航中心 | 轻量化交通流仿真,支持OSM地图输入,提供丰富的Python API接口:TraCI | 否 |
VISSIM | PTV Group | 使用人类行为特征模型,能反映人类交通参与者多类行为特质 | ||
Highway-Env | 开源社区 | 轻量级驾驶场景模拟,支持简单交通规则 | 否 | |
LimSim | 上海AI Lab | 支持大语言模型接入,可实现长时间闭环交通流仿真,并与自动驾驶车辆实现具有真实性的互动,可与SUMO/CARLA联合仿真 | 是 | |
数据驱动类仿真 | SimNet | Lyft | 基于超1 000+小时真实数据训练,首个神经网络驱动的自动驾驶可互动回放式仿真 | 否 |
Waymax | Waymo | 基于Waymo Open Motion Dataset,包含大量真实场景的可微闭环仿真器 | 否 | |
UniSim | Waabi | 构建一套神经传感模拟器,能基于真实世界获取的感知数据生成新视角下的感知数据 | 否 | |
MARS | 清华大学 | 基于NeRF技术构建的多传感器仿真,能对自动驾驶进行在极端与特殊情况下高真实性的测试 | 否 | |
数据驱动类仿真 | DriveArena | 上海AI Lab | 结合交通流管理器和世界生成模型实现了一种能在任意地图上生成逼真车流的交通模拟器 | 否 |
HUGSim | 浙江大学&华为 | 基于3D高斯渲染技术实现全闭环自动驾驶仿真;在外推视图上实现了更高精度的仿真 | 否 | |
全栈仿真 | CARLA | 巴塞罗那自治大学计算机视觉中心 | 开源平台,基于虚幻引擎的高保真3D场景,支持多天气条件、传感器仿真(摄像头、激光雷达),提供Python API和大量基准测试 | 否 |
VTD | VIRES(MSC Software) | 模块化工具链,支持OpenX自动驾驶场景标准,物理级传感器仿真和实时渲染 | 否 | |
TAD Sim | 腾讯 | 基于游戏引擎和数字孪生技术,支持AI交通流 | 否 | |
FLOWSIM | 清华大学 | 基于“基因级”人类驾驶员模型实现高拟真的自动驾驶与人类驾驶的交互场景;具有虚实结合的仿真测试功能,可方便地应用于整车测试 | 是 | |
[1] | International SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-road Motor Vehicles: J3016_202104 [S]. Warrendale, PA, USA: SAE International, 2021: 1-41. |
[2] | Statista. Autonomous Vehicle Market Size Worldwide 2021-2030[R/OL].(2024-12-25)[2025-05-21]. |
[3] | 中商情报网. 2025年全球及中国自动驾驶市场规模预测分析[EB/OL]. (2025-01-10) [2025-04-19]. . |
[4] | McKinsey & Company. What's next for autonomous vehicles?[R/OL]. (2021-12-22) [2025-04-19]. . |
[5] | Feng Shuo, Sun Haowei, Yan Xintao, et al. Dense Reinforcement Learning for Safety Validation of Autonomous Vehicles[J]. Nature, 2023, 615(7953): 620-627. |
[6] | Kalra N, Paddock S M. Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability?[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 182-193. |
[7] | Anon. Tesla FSD Beta Already Provides High Level of Safety: Only 0. 31 Accidents Per Million Miles[EB/OL]. (2023-04-25)[2025-04-21]. . |
[8] | 北京水清木华研究中心. 2022年自动驾驶仿真产业链研究报告(中国篇)[EB/OL]. (2023-01) [2025-04-25]. . |
[9] | California DMV. 2023 Disengagement Reports[EB/OL]. [2025-04-26]. . |
[10] | 盖世汽车. 自动驾驶仿真测试风起[EB/OL]. (2020-03-17) [2025-04-27]. . |
[11] | 中国电动汽车百人会, 腾讯自动驾驶, 中汽数据有限公司. 2020中国自动驾驶仿真蓝皮书[EB/OL]. (2020-10-12) [2025-04-27]. |
[12] | 谢俊, 郭晨海, 刘军, 等. 非线性悬架动力学数值模拟和性能评价[J]. 江苏大学学报(自然科学版), 2004, 25(3): 216-219. |
Xie Jun, Guo Chenhai, Liu Jun, et al. Performance Evaluation and Numerical Simulation for Non-linear Dynamic Suspension System of Vehicles[J]. Journal of Jiangsu University(Natural Science Edition), 2004, 25(3): 216-219. | |
[13] | Manivasagam Sivabalan, Wang Shenlong, Wong Kelvin, et al. LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 11164-11173. |
[14] | Kazi Iftekhar Ahmed. Modeling Freeway Lane Changing Behavior[M]. Cambridge: Massachusetts Institute of Technology, 1996. |
[15] | 工业和信息化部, 国家标准化管理委员会. 关于印发«国家车联网产业标准体系建设指南(智能网联汽车)(2023版)»的通知: 工信部联科〔2023〕109号[EB/OL]. (2023-07-26)[2025-05-28]. . |
[16] | Fortune Business Insights. 仿真软件市场规模增长报告 [2032][EB/OL]. (2025-06-02) [2025-06-05]. . |
[17] | MathWorks The, Inc. 车辆动力学建模仿真助力底盘控制开发[EB/OL]. (2022-08-10) [2025-05-13]. . |
[18] | Zhao Ding, Peng H, Bao Shan, et al. Accelerated Evaluation of Automated Vehicles Using Extracted Naturalistic Driving Data[M]//Martin Rosenberger, Manfred Plöchl, Klaus Six, et al. The Dynamics of Vehicles on Roads and Tracks. London: CRC Press, 2015: 287-296. |
[19] | Han Yu, Li Yan, Yu Shixuan, et al. Modeling Lane Changes Using Parallel Learning[J]. Transportation Research Part C: Emerging Technologies, 2024, 167: 104841. |
[20] | Haider Arsalan, Pigniczki Marcell, Köhler Michael H, et al. Development of High-fidelity Automotive LiDAR Sensor Model with Standardized Interfaces[J]. Sensors, 2022, 22(19): 7556. |
[21] | Hu Fuzhi, Zhang Zili, Hu Xing, et al. A Scene Flow Estimation Method Based on Fusion Segmentation and Redistribution for Autonomous Driving[J]. IET Control Theory & Applications, 2023, 17(13): 1779-1788. |
[22] | Zang Shizhe, Ding Ming, Smith D, et al. The Impact of Adverse Weather Conditions on Autonomous Vehicles: How Rain, Snow, Fog, and Hail Affect the Performance of a Self-driving Car[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 103-111. |
[23] | Li W, Pan C W, Zhang R, et al. AADS: Augmented Autonomous Driving Simulation Using Data-driven Algorithms[J]. Science Robotics, 2019, 4(28): eaaw0863. |
[24] | Yang Zhenpei, Chai Yuning, Anguelov D, et al. SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 11115-11124. |
[25] | Hanselmann Niklas, Doll Simon, Cordts Marius, et al. EMPERROR: A Flexible Generative Perception Error Model for Probing Self-driving Planners[EB/OL]. (2025-05-13) [2025-05-26]. . |
[26] | dSPACE. 用于验证传感器融合ECU的入门级回放系统[EB/OL]. [2025-05-17]. . |
[27] | GmbH dSPACE. Achieving Safer Autonomy with ISO 26262 and Simulation-Based Testing[EB/OL]. (2018-09-19) [2025-04-17]. . |
[28] | 佐思汽研. 2025年智能驾驶仿真与世界模型研究报告[EB/OL]. (2025-06-12) [2025-06-03]. . |
[29] | IT业界. 自动驾驶应用加速 模拟仿真技术是关键之一[EB/OL]. (2020-03-24) [2025-04-18]. . |
[30] | 前瞻产业研究院. 2025-2030年全球及中国自动驾驶行业技术发展和商业化落地现状分析报告[EB/OL]. [2025-05-22]. . |
[31] | 亿欧智库. 云服务新引擎,高效驱动自动驾驶数据闭环发展白皮书[EB/OL]. (2023-09-21) [2025-04-21]. . |
[32] | 佐思汽研. 2024年自动驾驶仿真产业研究报告[EB/OL]. (2024-05) [2025-04-21]. . |
[33] | Mo Elshenawy. Building Continuous Integration & Continuous Delivery for Autonomous Vehicles on Google Cloud[EB/OL]. (2022-03-10) [2025-05-18]. . |
[34] | Krauß S. Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle Dynamics[EB/OL]. (1998-01-01) [2024-12-13]. . |
[35] | Fellendorf Martin, Vortisch Peter. Microscopic Traffic Flow Simulator VISSIM[M]//Jaume Barceló. Fundamentals of Traffic Simulation. New York: Springer New York, 2010: 63-93. |
[36] | Treiber Martin, Hennecke Ansgar, Helbing Dirk. Congested Traffic States in Empirical Observations and Microscopic Simulations[J]. Physical Review E, 2000, 62(2): 1805-1824. |
[37] | Bergamini Luca, Ye Yawei, Scheel Oliver, et al. SimNet: Learning Reactive Self-driving Simulations from Real-world Observations[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 5119-5125. |
[38] | Suo Simon, Regalado Sebastian, Casas Sergio, et al. TrafficSim: Learning to Simulate Realistic Multi-agent Behaviors[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 10395-10404. |
[39] | Yan Xintao, Zou Zhengxia, Feng Shuo, et al. Learning Naturalistic Driving Environment with Statistical Realism[J]. Nature Communications, 2023, 14(1): 2037. |
[40] | Wu Jianping, Brackstone M, McDonald M. Fuzzy sets and Systems for a Motorway Microscopic Simulation Model[J]. Fuzzy Sets and Systems, 2000, 116(1): 65-76. |
[41] | Wu J, Brackstone M, McDonald M. The Validation of a Microscopic Simulation Model: A Methodological Case Study[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(6): 463-479. |
[42] | Qi Geqi, Wu Jianping, Zhou Yang, et al. Recognizing Driving Styles Based on Topic Models[J]. Transportation Research Part D: Transport and Environment, 2019, 66: 13-22. |
[43] | Rasouli Amir. Pedestrian Simulation: A Review[EB/OL]. (2021-02-05)[2022-05-29]. . |
[44] | A H Algadhi Saad, Mahmassani Hani S. Simulation of Crowd Behavior and Movement: Fundamental Relations and Application[J]. Transportation Research Record Journal of the Transportation Research Board, 1991, 1320: 260-268. |
[45] | Blue V J, Adler J L. Cellular Automata Microsimulation for Modeling Bi-directional Pedestrian Walkways[J]. Transportation Research Part B: Methodological, 2001, 35(3): 293-312. |
[46] | Lämmel Gregor, Flötteröd Gunnar. A CA Model for Bidirectional Pedestrian Streams[J]. Procedia Computer Science, 2015, 52: 950-955. |
[47] | Banarjee Soumya, Grosan C, Abraham A. Emotional Ant Based Modeling of Crowd Dynamics[C]//Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05). Piscataway: IEEE, 2005: 8. |
[48] | Gupta A, Johnson J, Li Feifei, et al. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2255-2264. |
[49] | Ling Huang, Wu Jianping. A Study on Cyclist Behavior at Signalized Intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 293-299. |
[50] | Lipson H, Pollack J B. Automatic Design and Manufacture of Robotic Lifeforms[J]. Nature, 2000, 406(6799): 974-978. |
[51] | Mechanical Simulation Corporation. CarSim User Manual. 2023[EB/OL]. [2025-04-23]. . |
[52] | Automotive IPG. CarMaker Product Documentation. 2023[EB/OL]. [2025-04-22]. . |
[53] | Siemens Digital Industries Software. PreScan Functional Overview. 2022[EB/OL]. [2025-04-22]. . |
[54] | Group PTV. VISSIM 2023 User Guide. 2023[EB/OL]. [2025-04-22]. . |
[55] | VIRES Simulationstechnologie GmbH. VTD 2.3 Technical Specifications. 2023[EB/OL]. [2025-04-25]. . |
[56] | Ohl Sebastian, Maurer Markus. A Contour Classifying Kalman Filter Based on Evidence Theory[C]//2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Piscataway: IEEE, 2011: 1392-1397. |
[57] | Dosovitskiy Alexey, Ros German, Codevilla Felipe, et al. CARLA: An Open Urban Driving Simulator[C]//Proceedings of the 1st Annual Conference on Robot Learning. Chia Laguna Resort: PMLR, 2017: 1-16. |
[58] | Menzel Till, Bagschik Gerrit, Maurer Markus. Scenarios for Development, Test and Validation of Automated Vehicles[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE, 2018: 1821-1827. |
[59] | Wickramarachchi R, Henson C, Sheth A. An Evaluation of Knowledge Graph Embeddings for Autonomous Driving Data: Experience and Practice[EB/OL]. (2020-02-29) [2025-04-25]. . |
[60] | Palnitkar A, Kapu R, Lin Xiaomin, et al. ChatSim: Underwater Simulation with Natural Language Prompting[C]//OCEANS 2023 - MTS/IEEE U.S. Gulf Coast. Piscataway: IEEE, 2023: 1-7. |
[61] | Zhang Jiawei, Xu Chejian, Li Bo. ChatScene: Knowledge-enabled Safety-critical Scenario Generation for Autonomous Vehicles[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2024: 15459-15469. |
[1] | Mao Ziquan, Gao Jialong, Gong Jianxing, Liu Quan. Application of Virtual-Real Simulation in Military Field [J]. Journal of System Simulation, 2023, 35(11): 2289-2311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||