Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (6): 1433-1441.doi: 10.16182/j.issn1004731x.joss.23-1263
• Papers • Previous Articles Next Articles
Su Benyue1,2(), Zhu Bangguo1,2, Guo Mengjuan1,2, Sheng Min3
Received:
2023-10-18
Revised:
2024-01-04
Online:
2024-06-28
Published:
2024-06-19
CLC Number:
Su Benyue, Zhu Bangguo, Guo Mengjuan, Sheng Min. Fusing Rotation Angle Coding in Spherical Space for Human Action Recognition[J]. Journal of System Simulation, 2024, 36(6): 1433-1441.
Table 3
Recognition rates on NTU RGB+D 60 dataset %
方法 | CV | Add | CS | Add |
---|---|---|---|---|
STA-LSTM[ | 81.2 | 11.3 | 73.4 | 14.4 |
TCN[ | 83.1 | 9.4 | 74.3 | 13.5 |
VA-LSTM[ | 87.7 | 4.8 | 79.2 | 8.6 |
ElAtt-GRU[ | 88.4 | 4.1 | 80.7 | 7.1 |
PA-GCN[ | 82.7 | 9.8 | 80.4 | 7.4 |
ST-GCN[ | 88.3 | 4.2 | 81.5 | 6.3 |
LSTM+GCN[ | 90.2 | 2.3 | 84.8 | 3.0 |
DIF-CNN[ | 85.8 | 6.7 | 81.0 | 6.8 |
DG-2sCNN[ | 91.2 | 1.3 | 87.1 | 0.7 |
AFE-CNN[ | 92.2 | 0.3 | 86.2 | 1.6 |
HCN[ | 89.1 | 3.4 | 84.5 | 3.3 |
R-STCNN | 92.5 | 87.8 |
Table 4
Recognition rates on NTU RGB+D 120 dataset %
方法 | CS | Add | Cset | Add |
---|---|---|---|---|
ST-LSTM+Trust Gate[ | 56.5 | 33.9 | 54.1 | 24.8 |
GCA-LSTM[ | 58.3 | 22.1 | 59.2 | 19.7 |
Two-stream network[ | 62.2 | 18.2 | 61.8 | 17.1 |
ST-GCN[ | 70.7 | 9.7 | 73.2 | 5.7 |
AS-GCN[ | 77.7 | 2.7 | 78.9 | 0 |
STF-GCN[ | 76.7 | 3.7 | 79.0 | -0.1 |
Synthesized CNN[ | 60.3 | 20.1 | 63.2 | 15.7 |
SGN[ | 79.2 | 79.2 | 81.5 | -2.6 |
DG-2sCNN[ | 78.0 | 2.4 | 81.0 | -2.1 |
HCN(base) | 76.5 | 3.9 | 76.6 | 2.3 |
R-STCNN | 80.4 | 78.9 |
1 | Trelinski Jacek, Kwolek Bogdan. CNN-based and DTW Features for Human Activity Recognition on Depth Maps[J]. Neural Computing and Applications, 2021, 33(21): 14551-14563. |
2 | Shi Lei, Zhang Yifan, Cheng Jian, et al. Skeleton-based Action Recognition with Directed Graph Neural Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 7904-7913. |
3 | 苏本跃, 孙满贞, 马庆, 等. 单视角下基于投影子空间视图的动作识别方法[J]. 系统仿真学报, 2023, 35(5): 1098-1108. |
Su Benyue, Sun Manzhen, Ma Qing, et al. Action Recognition Method Based on Projection Subspace Views Under Single Viewing Angle[J]. Journal of System Simulation, 2023, 35(5): 1098-1108. | |
4 | Li Chao, Zhong Qiaoyong, Xie Di, et al. Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2018: 786-792. |
5 | Talha S A W, Hammouche M, Ghorbel E, et al. Features and Classification Schemes for View-invariant and Real-time Human Action Recognition[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(4): 894-902. |
6 | Yan Sijie, Xiong Yuanjun, Lin Dahua. Spatial Temporal Graph Convolutional Networks for Skeleton-based Action Recognition[C]//Proceedings of the Thirty-second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2018: 912. |
7 | Guan Shannan, Lu Haiyan, Zhu Linchao, et al. AFE-CNN: 3D Skeleton-based Action Recognition with Action Feature Enhancement[J]. Neurocomputing, 2022, 514: 256-267. |
8 | Kim T S, Reiter A. Interpretable 3D Human Action Analysis with Temporal Convolutional Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, NJ, USA: IEEE, 2017: 1623-1631. |
9 | Si Chenyang, Jing Ya, Wang Wei, et al. Skeleton-based Action Recognition with Spatial Reasoning and Temporal Stack Learning[C]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 106-121. |
10 | Du Y, Fu Y, Wang L. Skeleton Based Action Recognition with Convolutional Neural Network[C]//2015 3rd IAPR Asian Conference on Pattern Recognition. 2015: 579-583. |
11 | Liu Shuhua, Bai Xiaoying, Fang Ming, et al. Mixed Graph Convolution and Residual Transformation Network for Skeleton-based Action Recognition[J]. Applied Intelligence, 2022, 52(2): 1544-1555. |
12 | 赵瑛, 陆耀, 张健, 等. 基于深度神经网络的多视角人体动作识别[J]. 系统仿真学报, 2021, 33(5): 1019-1030. |
Zhao Ying, Lu Yao, Zhang Jian, et al. Multi-view Human Action Recognition Based on Deep Neural Network[J]. Journal of System Simulation, 2021, 33(5): 1019-1030. | |
13 | Ke Qiuhong, Bennamoun M, An Senjian, et al. A New Representation of Skeleton Sequences for 3D Action Recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 4570-4579. |
14 | Xu Kailin, Ye Fanfan, Zhong Qiaoyong, et al. Topology-aware Convolutional Neural Network for Efficient Skeleton-based Action Recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2022: 2866-2874. |
15 | Huang Hong'en, Su Hang, Chang Zhigang, et al. Convolutional Neural Network with Adaptive Inferential Framework for Skeleton-based Action Recognition[J]. Journal of Visual Communication and Image Representation, 2020, 73: 102925. |
16 | Ofli F, Chaudhry R, Kurillo G, et al. Sequence of the Most Informative Joints (SMIJ): A New Representation for Human Skeletal Action Recognition[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 24-38. |
17 | Ömer Faruk İnce, Ibrahim Furkan Ince, Mustafa Eren Yıldırım, et al. Human Activity Recognition with Analysis of Angles Between Skeletal Joints Using a RGB-depth Sensor[J]. ETRI Journal, 2020, 42(1): 78-89. |
18 | Ibrahim Furkan Ince. Performance Boosting of Scale and Rotation Invariant Human Activity Recognition (HAR) with LSTM Networks Using Low Dimensional 3D Posture Data in Egocentric Coordinates[J]. Applied Sciences, 2020, 10(23): 8474. |
19 | Zatsiorsky V M. Kinetics of Human Motion[M]. Champaign, IL, USA: Human Kinetics, 2002. |
20 | Shahroudy A, Liu Jun, Ng T T, et al. NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 1010-1019. |
21 | Liu Jun, Shahroudy Amir, Perez M, et al. NTU RGB+D 120: A Large-scale Benchmark for 3D Human Activity Understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684-2701. |
22 | Song S, Lan C, Xing J, et al. An end-to-end spatio-temporal Attention Model for Human Action Recognition from Skeleton Data[C]//Proceedings of the AAAI conference on artificial intelligence. 2017, 31(1). |
23 | Zhang Pengfei, Lan Cuiling, Xing Junliang, et al. View Adaptive Recurrent Neural Networks for High Performance Human Action Recognition from Skeleton Data[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 2136-2145. |
24 | Zhang Pengfei, Xue Jianru, Lan Cuiling, et al. Adding Attentiveness to the Neurons in Recurrent Neural Networks[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 136-152. |
25 | Qin Yang, Mo Lingfei, Li Chenyang, et al. Skeleton-based Action Recognition by Part-aware Graph Convolutional Networks[J]. The Visual Computer, 2020, 36(3): 621-631. |
26 | Si Chenyang, Jing Ya, Wang Wei, et al. Skeleton-based Action Recognition with Hierarchical Spatial Reasoning and Temporal Stack Learning Network[J]. Pattern Recognition, 2020, 107: 107511. |
27 | Chen Han, Jiang Yifan, Ko Hanseok. Action Recognition with Domain Invariant Features of Skeleton Image[C]//2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway, NJ, USA: IEEE, 2021: 1-7. |
28 | Su Benyue, Zhang Peng, Sun Manzhen, et al. Direction-guided Two-stream Convolutional Neural Networks for Skeleton-based Action Recognition[J]. Soft Computing, 2023, 27(16): 11833-11842. |
29 | Liu Jun, Shahroudy A, Xu D, et al. Skeleton-based Action Recognition Using Spatio-temporal LSTM Network with Trust Gates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(12): 3007-3021. |
30 | Liu Jun, Wang Gang, Duan Lingyu, et al. Skeleton-based Human Action Recognition with Global Context-aware Attention LSTM Networks[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1586-1599. |
31 | Li Maosen, Chen Siheng, Chen Xu, et al. Actional-structural Graph Convolutional Networks for Skeleton-based Action Recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 3590-3598. |
32 | Liu Xing, Li Yanshan, Xia Rongjie. Adaptive Multi-view Graph Convolutional Networks for Skeleton-based Action Recognition[J]. Neurocomputing, 2021, 444: 288-300. |
33 | Liu Mengyuan, Liu Hong, Chen Chen. Enhanced Skeleton Visualization for View Invariant Human Action Recognition[J]. Pattern Recognition, 2017, 68: 346-362. |
34 | Zhang Pengfei, Lan Cuiling, Zeng Wenjun, et al. Semantics-guided Neural Networks for Efficient Skeleton-based Human Action Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 1109-1118. |
[1] | Su Benyue, Zhang Peng, Zhu Bangguo, Guo Mengjuan, Sheng Min. Human Action Recognition Based on Skeleton Edge Information Under Projection Subspace [J]. Journal of System Simulation, 2024, 36(3): 555-563. |
[2] | Zhao Ying, Lu Yao, Zhang Jian, Liang Qidi, Long Wei. Multi-view Human Action Recognition Based on Deep Neural Network [J]. Journal of System Simulation, 2021, 33(5): 1019-1030. |
[3] | Tang Chao, Zhang Miaohui, Li Wei, Cao Feng, Wang Xiaofeng, Tong Xiaohong. Fusing Local and Global Features for Human Action Recognition [J]. Journal of System Simulation, 2018, 30(7): 2497-2506. |
[4] | Tang Chao, Zhang Miaohui, Li Wei, Cao Feng, Wang Xiaofeng, Tong Xiaohong. Human Action Recognition Based on Depth Image [J]. Journal of System Simulation, 2018, 30(5): 1641-1649. |
[5] | Zhan Yongjie, Long Fei, Bu Yikun. Facial Expression Recognition with Independent Subspace Analysis Based Feature Learning [J]. Journal of System Simulation, 2015, 27(10): 2316-2319. |
[6] | Shi Xiangbin, Liu Shuanpeng, Zhang Deyuan. Human Action Recognition Method Based on Key Frames [J]. Journal of System Simulation, 2015, 27(10): 2401-2408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||