| 1 | 
																						 
											Wiser R, Rand J, Seel J, et al. Expert Elicitation Survey Predicts 37% to 49% Declines in Wind Energy Costs by 2050[J]. Nature Energy, 2021, 6(5): 555-565.
																						 | 
										
																													
																							| 2 | 
																						 
											Li Jie, Liu Chao, Zhang Pengfei, et al. Difference Between Grid Connections of Large-scale Wind Power and Conventional Synchronous Generation[J]. Global Energy Interconnection, 2020, 3(5): 486-493.
																						 | 
										
																													
																							| 3 | 
																						 
											Ahmad T, Zhang Hongcai, Yan Biao. A Review on Renewable Energy and Electricity Requirement Forecasting Models for Smart Grid and Buildings[J]. Sustainable Cities and Society, 2020, 55: 102052.
																						 | 
										
																													
																							| 4 | 
																						 
											杨茂, 许传宇, 王凯旋. 基于切换输出机制的超短期风电功率预测[J]. 高电压技术, 2022, 48(2): 420-429.
																						 | 
										
																													
																							 | 
																						 
											Yang Mao, Xu Chuanyu, Wang Kaixuan. Ultra-short-term Wind Power Forecasting Based on Switching Output Mechanism[J]. High Voltage Engineering, 2022, 48(2): 420-429.
																						 | 
										
																													
																							| 5 | 
																						 
											Zhang Gang, Liu Hongchi, Zhang Jiangbin, et al. Wind Power Prediction Based on Variational Mode Decomposition Multi-frequency Combinations[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(2): 281-288.
																						 | 
										
																													
																							| 6 | 
																						 
											Yuan Xiaohui, Tan Qingxiong, Lei Xiaohui, et al. Wind Power Prediction Using Hybrid Autoregressive Fractionally Integrated Moving Average and Least Square Support Vector Machine[J]. Energy, 2017, 129: 122-137.
																						 | 
										
																													
																							| 7 | 
																						 
											Jonata C de Albuquerque, Ronaldo R B de Aquino, Otoni Nóbrega Neto, et al. Power Curve Modelling for Wind Turbine Using Artificial Intelligence Tools and Pre-established Inference Criteria[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(3): 526-533.
																						 | 
										
																													
																							| 8 | 
																						 
											王子赟, 纪志成. 基于滤波极大似然随机梯度的弃风电量预测[J]. 系统仿真学报, 2017, 29(3): 589-594.
																						 | 
										
																													
																							 | 
																						 
											Wang Ziyun, Ji Zhicheng. Filtering Based Maximum Likelihood Stochastic Gradient Prediction on Wind Power Curtailment[J]. Journal of System Simulation, 2017, 29(3): 589-594.
																						 | 
										
																													
																							| 9 | 
																						 
											Quachio R, Garcia C. MPC Relevant Identification Method for Hammerstein and Wiener Models[J]. Journal of Process Control, 2019, 80: 78-88.
																						 | 
										
																													
																							| 10 | 
																						 
											Li Junhong, Zheng Weixing, Gu Juping, et al. A Recursive Identification Algorithm for Wiener Nonlinear Systems With Linear State-space Subsystem[J]. Circuits Systems and Signal Processing, 2018, 37(6): 2374-2393.
																						 | 
										
																													
																							| 11 | 
																						 
											Ase H, Katayama T. A Subspace-based Identification of Wiener-hammerstein Benchmark Model[J]. Control Engineering Practice, 2015, 44: 126-137.
																						 | 
										
																													
																							| 12 | 
																						 
											Jalaleddini K, Kearney R E. Subspace Identification of SISO Hammerstein Systems: Application to Stretch Reflex Identification[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2725-2734.
																						 | 
										
																													
																							| 13 | 
																						 
											Filipovic V. Recursive Identification of Block-oriented Nonlinear Systems in the Presence of Outliers[J]. Journal of Process Control, 2019, 78: 1-12.
																						 | 
										
																													
																							| 14 | 
																						 
											李峰, 罗印升, 李博, 等. 基于组合式信号源的Hammerstein-Wiener模型辨识方法[J]. 控制与决策, 2022, 37(11): 2959-2967.
																						 | 
										
																													
																							 | 
																						 
											Li Feng, Luo Yinsheng, Li Bo, et al. Identification Method of the Hammerstein-wiener Model Based on Combined Signal Sources[J]. Control and Decision, 2022, 37(11): 2959-2967.
																						 | 
										
																													
																							| 15 | 
																						 
											Rahmani M R, Farrokhi M. Identification of Neuro-fractional Hammerstein Systems: A Hybrid Frequency-/time-domain Approach[J]. Soft Computing, 2018, 22(24): 8097-8106.
																						 | 
										
																													
																							| 16 | 
																						 
											Li Feng, Zhu Xinjian, He Naibao, et al. Parameter Learning for the Nonlinear System Described by Hammerstein Model with Output Disturbance[J]. Asian Journal of Control, 2023, 25(2): 886-898.
																						 | 
										
																													
																							| 17 | 
																						 
											Li Feng, Jia Li. Correlation Analysis-based Error Compensation Recursive Least-square Identification Method for the Hammerstein Model[J]. Journal of Statistical Computation and Simulation, 2018, 88(1): 56-74.
																						 | 
										
																													
																							| 18 | 
																						 
											邹同华, 高云鹏, 伊慧娟, 等. 基于Thompson tau-四分位和多点插值的风电功率异常数据处理[J]. 电力系统自动化, 2020, 44(15): 156-162.
																						 | 
										
																													
																							 | 
																						 
											Zou Tonghua, Gao Yunpeng, Yi Huijuan, et al. Processing of Wind Power Abnormal Data Based on Thompson Tau-quartile and Multi-point Interpolation[J]. Automation of Electric Power Systems, 2020, 44(15): 156-162.
																						 | 
										
																													
																							| 19 | 
																						 
											Shen Xiaojun, Fu Xuejiao, Zhou Chongcheng. A Combined Algorithm for Cleaning Abnormal Data of Wind Turbine Power Curve Based on Change Point Grouping Algorithm and Quartile Algorithm[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 46-54.
																						 | 
										
																													
																							| 20 | 
																						 
											Li Feng, Jia Li, Peng Daogang, et al. Neuro-fuzzy Based Identification Method for Hammerstein Output Error Model with Colored Noise[J]. Neurocomputing, 2017, 244: 90-101.
																						 | 
										
																													
																							| 21 | 
																						 
											Li Feng, Jia Li, Peng Daogang. Identification Method of Neuro-fuzzy-based Hammerstein Model with Coloured Noise[J]. IET Control Theory & Applications, 2017, 11(17): 3026-3037.
																						 | 
										
																													
																							| 22 | 
																						 
											Wang Dongqing, Ding Feng. Extended Stochastic Gradient Identification Algorithms for Hammerstein-wiener ARMAX Systems[J]. Computers & Mathematics With Applications, 2008, 56(12): 3157-3164.
																						 |