Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (3): 435-453.doi: 10.16182/j.issn1004731x.joss.22-1507
• Expert Manuscript • Next Articles
Jingyuan Zhu1(), Huimin Ma2(
), Jian Yuan1
Online:
2023-03-30
Published:
2023-03-22
Contact:
Huimin Ma
E-mail:jy-zhu20@mails.tsinghua.edu.cn;mhmpub@ustb.edu.cn
About author:
Zhu Jingyuan(1999-), male, Manchu, doctoral student, research area:computer graphics and computer vision. E-mail:jy-zhu20@mails.tsinghua.edu.cn
Supported by:
CLC Number:
Jingyuan Zhu, Huimin Ma, Jian Yuan. Learning-Based High-Performance Algorithm for Long-Term Motion Prediction of Fluid Flows[J]. Journal of System Simulation, 2023, 35(3): 435-453.
Table 1
Parameters of U-Net-based autoencoder layers
Layer | Kernel | Stride | Activation | Output | Feature |
---|---|---|---|---|---|
fe1 | 4 | 2 | Linear | r /2 | 16ti |
fe2 | 2 | 2 | LeakyReLU | r /4 | 32ti |
fe3 | 2 | 2 | LeakyReLU | r /8 | 64ti |
fe4 | 2 | 2 | LeakyReLU | r /16 | 128ti |
fe5 | 2 | 2 | LeakyReLU | r /32 | 256ti |
fd1 | 2 | 2 | LeakyReLU | r /16 | 128to |
fd2 | 2 | 2 | LeakyReLU | r /8 | 64to |
fd3 | 2 | 2 | LeakyReLU | r /4 | 32to |
fd4 | 2 | 2 | LeakyReLU | r /2 | 16to |
fd5 | 4 | 2 | LeakyReLU | r | dto |
Table 2
Statistics of simulation datasets used in this paper
Scene Type | Resolution | Scene | Frames |
---|---|---|---|
Single source smoke (3D) | 643 | 600 | 100 |
Single source smoke with obstacles (3D) | 643 | 600 | 200 |
Single source smoke (2D) | 642 | 600 | 200 |
Single source smoke (2D) | 1282 | 600 | 200 |
Single source smoke with obstacles (2D) | 642 | 600 | 200 |
Single source smoke with obstacles (2D) | 1282 | 600 | 200 |
Rising smoke (2D) | 642 | 1 000 | 200 |
Rising smoke(2D) | 1282 | 1 000 | 200 |
Rotating cup (2D) | 642 | 600 | 200 |
Rotating and moving cup (2D) | 642 | 300 | 300 |
Table 3
Statistics of long-term prediction sub-networks
Datasets | Resolution | Long-term velocity | Long-term density | ||||
---|---|---|---|---|---|---|---|
PSNR | Cos similarity | MSE | PSNR | Cos similarity | MSE | ||
Single source smoke (3D) | 643 | 41.123 | 0.997 | 0.002 2 | 26.279 | 0.889 | 0.002 6 |
Single source smoke with obstacles (3D) | 643 | 32.289 | 0.993 | 0.006 6 | 35.717 | 0.993 | 0.000 2 |
Rotating cup (2D) | 642 | 20.430 | 0.835 | 0.008 0 | 23.244 | 0.970 | 0.002 9 |
Rotating and moving cup (2D) | 642 | 20.279 | 0.863 | 0.030 8 | 25.579 | 0.972 | 0.003 8 |
Single source smoke (2D) | 642 | 23.627 | 0.969 | 0.084 0 | 28.212 | 0.985 | 0.003 8 |
Single source smoke (2D) | 1282 | 25.024 | 0.976 | 0.264 8 | 27.377 | 0.978 | 0.006 4 |
Single source smoke with obstacles (2D) | 642 | 23.810 | 0.966 | 0.070 8 | 28.866 | 0.986 | 0.003 4 |
Single source smoke with obstacles (2D) | 1282 | 27.098 | 0.960 | 0.095 4 | 29.092 | 0.954 | 0.003 8 |
Table 4
Comparison between our long-term velocity prediction sub-network and LSP model on rising smoke datasets
Datasets | Resolution | LSP model | Our model | ||||
---|---|---|---|---|---|---|---|
PSNR | Cos similarity | MSE | PSNR | Cos similarity | MSE | ||
Rising smoke (2D) | 642 | 9.588 | 0.750 | 0.816 | 13.929 | 0.888 | 0.264 |
Rising smoke (2D) | 1282 | 6.138 | 0.697 | 2.523 | 15.802 | 0.907 | 0.279 |
Table 5
Statistics of long-term density prediction sub-network
Datasets | Resolution | Prediction with original velocity fields | Prediction with predicted velocity fields | ||||
---|---|---|---|---|---|---|---|
PSNR | Cos similarity | MSE | PSNR | Cos similarity | MSE | ||
Single source smoke (3D) | 643 | 26.279 | 0.889 | 0.003 | 26.738 | 0.865 | 0.004 |
Single source smoke with obstacles (3D) | 643 | 35.717 | 0.993 | 0.000 2 | 35.340 | 0.989 | 0.000 02 |
Single source smoke (2D) | 642 | 28.621 | 0.990 | 0.002 | 17.904 | 0.842 | 0.023 |
Single source smoke (2D) | 1282 | 25.886 | 0.984 | 0.003 | 18.418 | 0.886 | 0.019 |
Rising smoke (2D) | 642 | 18.465 | 0.895 | 0.009 | 17.760 | 0.875 | 0.010 |
Rising smoke (2D) | 1282 | 19.483 | 0.897 | 0.019 | 17.717 | 0.837 | 0.029 |
Table 6
Timing of a simulation step computed via long-term velocity prediction sub-network, LSP model, and LSS model averaged over testing data (50 time steps prediction) Our model achieves further speed-ups than the LSP and LSS models (ms)
Datasets | Rising smoke 64×64 | Rising smoke 128×128 |
---|---|---|
LSP model | 1.50 | 1.83 |
LSS model | 17.31 | 24.20 |
Our model | 0.56 | 0.92 |
Table 7
Timing of a simulation step computed via long-term prediction sub-networks averaged over testing data (50 time steps for velocity prediction and 150 time steps for density prediction)
Datasets | Resolution | Velocity prediction/ms | Density prediction/ms |
---|---|---|---|
Single source smoke (3D) | 643 | 25.80 | 24.14 |
Single source smoke with obstacles (3D) | 643 | 25.43 | 23.66 |
Rotating cup (2D) | 642 | 0.59 | 0.41 |
Rotating and moving cup (2D) | 642 | 0.84 | 0.52 |
Rising smoke (2D) | 642 | 0.56 | 0.66 |
Rising smoke (2D) | 1282 | 0.92 | 1.02 |
Single source smoke (2D) | 642 | 0.66 | 0.43 |
Single source smoke (2D) | 1282 | 1.06 | 0.89 |
Single source smoke with obstacles (2D) | 642 | 0.65 | 0.43 |
Single source smoke with obstacles (2D) | 1282 | 1.03 | 0.81 |
1 | Kim B, Azevedo V C, Thuerey N, et al. Deep Fluids: A Generative Network for Parameterized Fluid Simulations[J]. Computer Graphics Forum (S0167-7055), 2019, 38(2): 59-70. |
2 | Pfaff T, Fortunato M, Sanchez-Gonzalez A, et al. Learning Mesh-Based Simulation with Graph Networks[C]// International Conference on Learning Representations. Vienna, Austria: arXiv: , 2021. |
3 | Xie Y, Franz E, Chu M, et al. TempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow[J]. ACM Transactions on Graphics (S1557-7368), 2018, 37(4CD): 95:1-95:15. |
4 | Werhahn M, Xie Y, Chu M, et al. A Multi-Pass GAN for Fluid Flow Super-Resolution[J]. Proceedings of ACM on Computer Graphics and Interactive Techniques (S2577-6193), 2019, 2(2): 10:1-10:21. |
5 | Prantl L, Chentanez N, Jeschke S, et al. Tranquil Clouds: Neural Networks for Learning Temporally Coherent Features in Point Clouds[C]// International Conference on Learning Representations. Addis Ababa, Ethiopia: arXiv: , 2020. |
6 | Wiewel S, Becher M, Thuerey N, et al. Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow[J]. Computer Graphics Forum (S0167-7055), 2019, 38(2): 71-82. |
7 | Wiewel S, Kim B, Azevedo V C, et al. Latent Space Subdivision: Stable and Controllable Time Predictions for Fluid Flow[J]. Computer Graphics Forum (S0167-7055), 2020, 39(8): 15-25. |
8 | Tompson J, Schlachter K, Sprechmann P, et al. Accelerating Eulerian Fluid Simulation with Convolutional Networks[C]// 34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 3424-3433. |
9 | Zhu Y, Zabaras N, Koutsourelakis P S, et al. Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data[J]. Journal of Computational Physics (S0021-9991), 2019, 394: 56-81. |
10 | Li Xiaosheng, Liu Le, Wu Wen, et al. Dynamic BFECC Characteristic Mapping Method for Fluid Simulations[J]. Visual Computer (S1432-2315), 2014, 30: 787-796. |
11 | Wang Xin, Liu Yingjie. Back and Forth Error Compensation and Correction Method for Linear Hyperbolic Systems with Application to the Maxwell's Equations[J]. Journal of Computational Physics: X, (S0021-9991), 2019, 1(4): 100014. |
12 | Fedkiw Ronald, Stam Jos, Henrik Wann Jensen. Visual Simulation of Smoke[C]// SIGGRAPH 2001: Computer Graphics Conference Proceedings. Los Angeles, California, USA: ACM, 2001: 15-22. |
13 | Ding W, Jia L, Jiao H, et al. A New Method of Smoke Simulation[C]// The 2010 International Conference on Educational and Network Technology (ICENT). Qinhuangdao, China: IEEE, 2010: 267-270. |
14 | Xu Y, Liu S, Wu L. Smoke Simulation with Two-Scale Vorticity Confinement[C]// International Conference on Multimedia and Signal Processing. Shanghai, China: Springer, 2012: 467-474. |
15 | He X, Luo L S. Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation[J]. Physical Review E (S1539-3755), 1997, 56(6): 6811-6817. |
16 | Li W Z, Zhou X, Dong B, et al. A Thermal LBM Model for Studying Complex Flow and Heat Transfer Problems in Body-Fitted Coordinates[J]. International Journal of Thermal Sciences (S1290-0729). 2015, 98: 266-276. |
17 | Wen J, Ma H. Real-Time Smoke Simulation Based on Vorticity Preserving Lattice Boltzmann Method[J]. Visual Computer (S1432-2315), 2019, 35: 1279-1292. |
18 | Foster N, Fedkiw R. Practical Animation of Liquids[C]// SIGGRAPH 2001. Los Angeles, CA, USA: ACM, 2001: 23-30. |
19 | Zhu Y, Bridson R. Animating Sand as a Fluid[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2005, 24(3): 965-972. |
20 | Macklin M, Mueller M, Chentanez N, et al. Unified Particle Physics for Real-Time Applications[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2014, 33(4CD): 1-12. |
21 | Gissler C, Peer A, Band S, et al. Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2019, 38(1): 1-13. |
22 | Huang L, Hdrich T, Michels D L. On the Accurate Large-Scale Simulation of Ferrofluids[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2019, 38(4): 1-15. |
23 | Nagasawa K, Suzuki T, Seto R, et al. Mixing Sauces: A Viscosity Blending Model for Shear Thinning Fluids[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2019, 38(4): 1-17. |
24 | Rumelhart D E, Hinton G E, Williams R J. Learning Representations by Back Propagating Errors[J]. Nature (S1476-4687). 1986, 323(6088): 533-536. |
25 | Ladick L, Jeong S H, Solenthaler B, et al. Data-Driven Fluid Simulations Using Regression Forests[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2015, 34(6): 1-9. |
26 | Thuerey N, Weienow K, Prantl L, et al. Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows[J]. AIAA Journal (S1533-385X), 2020, 58(4): 1-12. |
27 | Um K, Hu X, Thuerey N. Liquid Splash Modeling with Neural Networks[J]. Computer Graphics Forum (S0167-7055), 2018, 37(8): 171-182. |
28 | Hennigh O. Lat-Net: Compressing Lattice Boltzmann Flow Simulations Using Deep Neural Networks[J]. 10.48550/arXiv: , 2017. |
29 | Chu M, Thuerey N. Data-Driven Synthesis of Smoke Flows with CNN-Based Feature Descriptors[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2017, 36(4): 69:1-69:14. |
30 | Kani J N, Elsheikh A H. Reduced Order Modeling of Subsurface Multiphase Flow Models Using Deep Residual Recurrent Neural Networks[J]. Transport in Porous Media (S1573-1634), 2019, 126: 713-74. |
31 | Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. Learning to Simulate Complex Physics with Graph Networks[C]// 37th International Conference on Machine Learning. Vienna, Austria: JMLR, 2020: 8459-8468. |
32 | Ummenhofer B, Prantl L, Thürey N, et al. Lagrangian Fluid Simulation with Continuous Convolutions[C]// International Conference on Learning Representations. Addis Ababa, Ethiopia: OpenReview.net, 2020. |
33 | Zhang M, Wang J, Tlhomole J, et al. Learning to Estimate and Refine Fluid Motion with Physical Dynamics[C]// 39th International Conference on Machine Learning. Baltimore, Maryland, USA: arXiv:, 2022. |
34 | Rasp P, Düben P D, Scher S, et al. WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting[J]. Journal of Advances in Modeling Earth Systems (S1942-2466), 2020, 12(11): e2020MS002203. |
35 | Eivazi H, Veisi H, Naderi M H, et al. Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows[J]. Physics of Fluids (S1070-6631), 2020, 32(10): 105104: 1-105104:21. |
36 | Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]// Neural Information Processing Systems. Montreal, Quebec, Canada: MIT Press, arXiv: , 2014. |
37 | Reed S, Akata Z, Yan X, et al. Generative Adversarial Text to Image Synthesis[C]//. International Conference on Machine Learning. New York City, NY, USA: Curran Associates, Inc., 2016: 1060-1069. |
38 | Chu M, Xie Y, Mayer J, et al. Learning Temporal Coherence Via Self-Supervision for GAN-Based Video Generation[J]. ACM Transactions on Graphics (TOG) (S1557-7368), 2020, 39(4): 75:1-75:13. |
39 | Wei W, Liu S. Interpolating Frames for Super-Resolution Smoke Simulation with GANs[C]// International Conference on Computer Animation and Social Agents (CASA). Bournemouth, UK: Springer, 2020: 14-21. |
40 | Kochkov D, Smith J A, Alieva A, et al. Machine Learning Accelerated Computational Fluid Dynamics[J]. Proceedings of the National Academy of Sciences (S0027-8424), 2021, 118(21): e2101784118. |
[1] | Sen Zhang, Mengyan Zhang, Jingping Shao, Jiexin Pu. Multi-UAVs 3D Path Planning Method Based on Random Strategy Search [J]. Journal of System Simulation, 2022, 34(6): 1286-1295. |
[2] | Wang Juan, Yang Xiaoyu, Wang Zongguo, Ren Jie, Zhao Xushan. Error Estimation for Material Simulation Data Based on Hybrid Learning Algorithm [J]. Journal of System Simulation, 2018, 30(10): 3843-3853. |
[3] | Sun Shouqun, Wei Zhongshuang, Lu Huayang. Fluid Flow, Heat and Mass Transfer in Hot Dip Galvanizing Bath [J]. Journal of System Simulation, 2017, 29(7): 1538-1545. |
[4] | Zhang Hong, Ren Fangmin, Zheng Rongbei. Simulation Research for Highway Maintenance Management System Based on System Dynamics [J]. Journal of System Simulation, 2016, 28(3): 676-682. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||