Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (10): 2119-2129.doi: 10.16182/j.issn1004731x.joss.21-0529
• Modeling Theory and Methodology • Previous Articles Next Articles
Hong Sun(), Yuelan Ling(
), Yuxiang Zhang
Received:
2021-06-07
Revised:
2021-08-11
Online:
2022-10-30
Published:
2022-10-18
Contact:
Yuelan Ling
E-mail:sunhong@usst.edu.cn;17701603738@163.com
CLC Number:
Hong Sun, Yuelan Ling, Yuxiang Zhang. Research on Improved Feature Pyramid Algorithm Integrating Border Supervision Strategy[J]. Journal of System Simulation, 2022, 34(10): 2119-2129.
1 | Hao S J, Zhou Y, Guo Y R. A Brief Survey on Semantic Segmentation with Deep Learning[J]. Neurocomputing (S0925-2312), 2020, 406: 302-321. |
2 | 青晨, 禹晶, 肖创柏, 等. 深度卷积神经网络图像语义分割研究进展[J]. 中国图像图形学报, 2020, 25(6): 1069-1090. |
Chen Qing, Yu Jing, Xiao Chuangbai, et al. Deep Convolutional Neural Network for Semantic Image Segmentation[J]. Journal of Image and Graphics, 2020, 25(6): 1069-1090. | |
3 | Siam M, Elkerdawy S, Jagersand M, et al. Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and Challenges[C]// The IEEE International Conference on Intelligent Transportation Systems. Piscataway, NJ: IEEE Press, 2017: 1-8. |
4 | Chen L, Bentley P, Mori K, et al. DRINet for Medical Image Segmentation[J]. IEEE Transactions on Medical Imaging(S0278-0062), 2018, 37(11): 2453-2462. |
5 | 顾菊平, 程天宇, 华亮, 等. 面向脊柱生物建模的图像分割与配准研究综述[J]. 系统仿真学报, 2019, 31(2): 167-173. |
Gu Juping, Cheng Tianyu, Hua Liang, et al. Overview of Image Segmentation and Registration for Spine Biological Modeling[J]. Journal of System Simulation, 2019, 31(2): 167-173. | |
6 | Huan L X, Zheng X W, Tang S J, et al. Learning Deep Cross-Scale Feature Propagation for Indoor Semantic Segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing(S0924-2716), 2021, 176: 42-53. |
7 | Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440. |
8 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2015-04-10) [2021-05-15]. . |
9 | He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 770-778. |
10 | Badrinarayanan V, Kendall A, Cipolla R. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2017, 39(12): 2481-2495. |
11 | Chen L C, Papandreou G, Kokkinos I, et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFS [EB/OL]. (2014-12-22) [2021-05-15]. . |
12 | Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2018, 40(4): 834-848. |
13 | Chen L C, Papandreou G, Schroff F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation [EB/OL]. (2017-12-05) [2021-05-15]. . |
14 | Chen L C, Zhu Y K, Papandreou G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]//The European Conference on Computer Vision. Munich: Springer, 2018: 833-851. |
15 | Yamashita T, Furukawa H, Fujiyoshi H. Multiple Skip Connections of Dilated Convolution Network for Semantic Segmentation[C]//The IEEE International Conference on Image Processing. Piscataway. NJ: IEEE Press, 2018: 1593-1597. |
16 | Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions [EB/OL]. (2016-04-30) [2021-05-15]. . |
17 | 陈洪云, 孙作雷, 孔薇. 融合深度神经网络和空洞卷积的语义图像分割研究[J]. 小型微型计算机系统, 2020, 41(1): 166-170. |
Chen Hongyun, Sun Zuolei, Kong Wei. Semantic Image Segmentation Based on Fusion of Deep Neural Networks and Atrous Convolution[J]. Journal of Chinese Computer Systems, 2020, 41(1): 166-170. | |
18 | Zhao H S, Shi J P, Qi X J, et al. Pyramid Scene Parsing Network[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 6230-6239. |
19 | 韩彬彬, 张月婷, 潘宗序, 等. 残差密集空间金字塔网络的城市遥感图像分割[J]. 中国图像图形学报, 2020, 25(12): 2656-2664. |
Han Binbin, Zhang Yueting, Pan Zongxu, et al. Residual Dense Spatial Pyramid Network for Urbanremote Sensing Image Segmentation[J]. Journal of Image and Graphics, 2020, 25(12): 2656-2664. | |
20 | Li H C, Xiong P F, An J, et al. Pyramid Attention Network for Semantic Segmentation [EB/OL]. (2018-11-25) [2021-05-10]. . |
21 | He J J, Deng Z Y, Qiao Y. Dynamic Multi-Scale Filters for Semantic Segmentation[C]//The IEEE International Conference on Computer Vision. Piscataway. NJ: IEEE Press, 2019: 3561-3571. |
22 | Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks [C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 7132-7141. |
23 | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//The European Conference on Computer Vision. Munich: Springer, 2018: 3-19. |
24 | Fu J, Liu J, Tian H J, et al. Dual Attention Network for Scene Segmentation[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2019: 3146-3154. |
25 | Zhong Z L, Lin Z Q, Bidart R, et al. Squeeze-and-Attention Network for Semantic Segmentation[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2020: 13062-13071. |
26 | Li X, Zhong Z S, Wu J L, et al. Expectation- Maximization Attention Networks for Semantic Segmentation[C]//The IEEE International Conference on Computer Vison. Piscataway, NJ: IEEE Press, 2019: 9166-9175. |
27 | Guo M H, Liu Z N, Mu T J, et al. Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks[EB/OL]. (2021-05-05) [2021-07-13]. . |
28 | Zhao Y C, Lin F S, Liu S G, et al. Constrained-Focal-Loss Based Deep Learning for Segmentation of Spores[J]. IEEE Access(S2169-3536), 2019, 7: 165029-165038. |
29 | Wu H S, Liang C X, Liu M S, et al. Optimized HRNet for Image Semantic Segmentation[J]. Expert Systems With Applications(S0957-4174), 2021, 174: 114532. |
30 | Yu C Q, Wang J B, Peng C, et al. Learning a Discriminative Feature Network for Semantic Segmentation[C]//The IEEE Conference Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 1857-1866. |
31 | Takikawa T, Acuna D, Jampani V, et al. Gated-SCNN: Gated Shape CNNs for Semantic Segmentation[C]//The IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE Press, 2019: 5228-5237. |
32 | Bertasius G, Shi J B, Torresani L. Semantic Segmentation with Boundary Neural Fields[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 3602-3610. |
33 | Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNetV2: Practical Guidelines for Efficient CNN Architecture Design [EB/OL]. (2018-07-30) [2021-05-23]. . |
34 | Sandler M, Howard A, Zhu M L, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 4510-4520. |
[1] | Chen Lijia, Wang Kai, Li Shigang, Tian Yanfei. Fast Maritime Simulator Scene Modeling Method Based on Aerial Images [J]. Journal of System Simulation, 2021, 33(7): 1565-1573. |
[2] | Liu Wang, Sun Jinyu, Ma Shiwei. A Temporal Action Detection Algorithm Based on Spatio-Temporal Feature Pyramid Network [J]. Journal of System Simulation, 2019, 31(11): 2382-2387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||