1 |
李磊, 韩洪伟, 蒋琪. 美决策中心战概念研究[J]. 战术导弹技术, 2021(1): 34-37, 120.
|
|
Li Lei, Han Hongwei, Jiang Qi. Analysis of the Concept of U.S. Decision-centric Warfare[J]. Tactical Missile Technology, 2021(1): 34-37, 120.
|
2 |
李磊, 沈剑, 蒋琪. 美智库«马赛克战: 利用人工智能和自主系统实施决策中心战»解读[J]. 飞航导弹, 2020(11): 1-3.
|
3 |
邓连印, 侯宇葵, 申志强. 美军新型作战概念发展分析与启示[J]. 航天电子对抗, 2020, 36(5): 18-23.
|
|
Deng Lianyin, Hou Yukui, Shen Zhiqiang. Analysis and Enlightenment on the Development of New Combat Concept in the US Army[J]. Aerospace Electronic Warfare, 2020, 36(5): 18-23.
|
4 |
左毅, 郑少秋, 袁翔, 等. 破解马赛克战之系统发展思考[J]. 指挥信息系统与技术, 2020, 11(6): 1-7.
|
|
Zuo Yi, Zheng Shaoqiu, Yuan Xiang, et al. System Development Consideration for Cracking Mosaic Warfare[J]. Command Information System and Technology, 2020, 11(6): 1-7.
|
5 |
杜燕波. 决胜无形空间: 美军在行动[J]. 军事文摘, 2021(1): 33-37.
|
6 |
高松, 孙媛, 段哲, 等. 基于马赛克战的电子对抗装备体系构建研究[J]. 舰船电子工程, 2021, 41(9): 78-82.
|
|
Gao Song, Sun Yuan, Duan Zhe, et al. Research on Electronic Countermeasure Equipment System Construction Based on Mosaic Warfare[J]. Ship Electronic Engineering, 2021, 41(9): 78-82.
|
7 |
程翔. 人工智能时代马赛克战致胜机理研究[J]. 舰船电子对抗, 2020, 43(2): 12-15, 25.
|
|
Cheng Xiang. Research into the Winning Mechanism of Mosaic Warfare in AI Era[J]. Shipboard Electronic Countermeasure, 2020, 43(2): 12-15, 25.
|
8 |
郭建国, 周敏, 郭宗易, 等. 马赛克战下的协同作战技术[J]. 航空兵器, 2021, 28(1): 1-5.
|
|
Guo Jianguo, Zhou Min, Guo Zongyi, et al. Cooperative Combat Technology Under Mosaic Warfare[J]. Aero Weaponry, 2021, 28(1): 1-5.
|
9 |
姜福涛, 黄学军. "马赛克战"浅析[J]. 航天电子对抗, 2020, 36(2): 60-64.
|
|
Jiang Futao, Huang Xuejun. Analysis of Mosaic Warfare[J]. Aerospace Electronic Warfare, 2020, 36(2): 60-64.
|
10 |
顾灏冰, 田少华, 周丹发, 等. 基于OODA环的马赛克战理念及关键技术分析[J]. 空天防御, 2021, 4(3): 65-69.
|
|
Gu Haobing, Tian Shaohua, Zhou Danfa, et al. Analysis of Mosaic Warfare Concept and Key Technologies Based on OODA Loop[J]. Air & Space Defense, 2021, 4(3): 65-69.
|
11 |
郭渊斐, 徐文龙, 赵玉亮. 美军"马赛克战"的发展及对我军智能化建设的启示[J]. 海军工程大学学报(综合版), 2020, 17(1): 24-28.
|
|
Guo Yuanfei, Xu Wenlong, Zhao Yuliang. Expectation of Development of US Army "Mosaic Warfare" and Its Enlightenment[J]. Journal of Naval University of Engineering(Comprehensive Edition), 2020, 17(1): 24-28.
|
12 |
李强, 王飞跃. 马赛克战概念分析和未来陆战场网信体系及其智能对抗研究[J]. 指挥与控制学报, 2020, 6(2): 87-93.
|
|
Li Qiang, Wang Feiyue. Conceptual Analysis of Mosaic Warfare and Systems of Network-information Systems for Intelligent Countermeasures and Future Land Battles[J]. Journal of Command and Control, 2020, 6(2): 87-93.
|
13 |
王星宇, 王娜, 黎开颜, 等. "马赛克战"作战概念分析及其对未来战争形态的影响[J]. 国防科技, 2022, 43(4): 87-92.
|
|
Wang Xingyu, Wang Na, Li Kaiyan, et al. An Analysis of the Mosaic Warfare Operational Concept and Its Influence on Future Warfare Forms[J]. National Defense Technology, 2022, 43(4): 87-92.
|
14 |
孙盛智, 刘玉, 盛碧琦, 等. "马赛克"战运行机制及制胜机理研究[J]. 指挥控制与仿真, 2023, 45(2): 150-154.
|
|
Sun Shengzhi, Liu Yu, Sheng Biqi, et al. Research on the Operation Mechanism and Winning Mechanism of Mosaic Warfare[J]. Command Control & Simulation, 2023, 45(2): 150-154.
|
15 |
陈明德, 和欣. 马赛克战对指挥与通信领域的启示分析[J]. 通信技术, 2022, 55(10): 1284-1293.
|
|
Chen Mingde, He Xin. Enlightenment Analysis of Mosaic Warfare for the Field of Command and Communications[J]. Communications Technology, 2022, 55(10): 1284-1293.
|
16 |
王芳, 饶运清, 唐秋华, 等. 多目标决策下Pareto非支配解的快速构造方法[J]. 系统工程理论与实践, 2016, 36(02): 454-463.
|
|
Wang Fang, Rao Yunqing, Tang Qiuhuaet al. Fast Construction Method of Pareto Non-dominated Solution Under Multi-objective Decision[J]. Systems Engineering Theory & Practice, 2016, 36(02): 454-463.
|
17 |
Kim Y K, park K, Ko J. A Symbiotic Evolutionary Algorithm for the Integration of Process Planning and Job Shop Scheduling[J]. Computers&Operations Research, 2003, 30 (8): 1151-1171.
|
18 |
李新宇. 工艺规划与车间调度集成问题的求解方法研究[D]. 武汉: 华中科技大学, 2009: 58.
|
|
Li Xinyu. Research on Solving Method of Integrated Process Planning and Scheduling[D]. Wuhan: Huazhong University of Science and Technology, 2009: 58.
|
19 |
Li X, Shao X, Gao L, et al. An Effective Hybrid Algorithm for Integrated Process Planning and Scheduling[J]. International Journal of Production Economics, 2010, 126(2).
|
20 |
文笑雨, 罗国富, 李浩, 等. 两阶段混合算法求解集成工艺规划与调度问题[J]. 中国机械工程, 2018, 29(22): 2716-2724+2732.
|
|
Wen Xiaoyu, Luo Guofu, Li Haoet al. Two-stage Hybrid Algorithm for Integrated Process Planning and Scheduling Problem[J]. China Mechanical Engineering, 2018, 29(22): 2716-2724+2732.
|
21 |
Wen X Y, Lian X N, Qian Y J, et al. Dynamic Scheduling Method for Integrated Process Planning and Scheduling Problem with Machine Fault[J], Robotics and Computer-Integrated Manufacturing, 2022, 77: 102334.
|
22 |
Zhang X., Liao Z., Ma L.et al. Hierarchical Multistrategy Genetic Algorithm for Integrated Process Planning and Scheduling[J]. Journal of Intelligent Manufacturing, 2022, 33(1): 223–246.
|
23 |
周辉仁, 唐万生, 魏颖辉. 柔性Flow-Shop调度的遗传算法优化[J]. 计算机工程与应用, 2009, 45(30): 224-226, 233.
|
|
Zhou Huiren, Tang Wansheng, Wei Yinghui. Genetic Algorithm Optimization of Flexible Flow-Shop Scheduling[J]. Computer Engineering and Applications, 2009, 45(30): 224-226, 233.
|
24 |
顾文斌, 李育鑫, 钱煜晖, 等. 基于激素调节机制IPSO算法的相同并行机混合流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(10): 2858-2871.
|
|
Gu Wenbin, Li Yuxin, Qian Yuhuiet al. Hybrid Flow Job Shop Scheduling Problem of Identical Parallel Machines Based on Hormone Regulation Mechanism IPSO Algorithm[J]. Computer Integrated Manufacturing System, 2021, 27(10): 2858-2871.
|