系统仿真学报 ›› 2024, Vol. 36 ›› Issue (11): 2566-2577.doi: 10.16182/j.issn1004731x.joss.23-0887

• 研究论文 • 上一篇    

基于分布优化配准的实时激光SLAM算法

李维刚1,2, 余楚翔2, 王永强2, 邹少峰2   

  1. 1.武汉科技大学 冶金自动化与检测技术教育部工程研究中心,湖北 武汉 430081
    2.武汉科技大学 信息科学与工程学院,湖北 武汉 430081
  • 收稿日期:2023-07-13 修回日期:2023-10-10 出版日期:2024-11-13 发布日期:2024-11-19
  • 第一作者简介:李维刚(1977-),男,教授,博士,研究方向为人工智能与自动化技术。
  • 基金资助:
    国家重点研发计划(2019YFB1310000);湖北省揭榜制科技项目(2020BED003);湖北省重点研发计划(2020BAB098)

Real-time Lidar SLAM Algorithm Based on Distribution Optimal Registration

Li Weigang1,2, Yu Chuxiang2, Wang Yongqiang2, Zou Shaofeng2   

  1. 1.Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
    2.School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2023-07-13 Revised:2023-10-10 Online:2024-11-13 Published:2024-11-19

摘要:

激光雷达在扫描周围环境时会产生部分杂乱且稀疏的点云,该类点云会在配准过程中产生过大的分布拟合误差和关联距离,进而影响配准算法的精度及同步定位与建图(simultaneous localization and mapping,SLAM)的效果。针对以上问题,提出了一种基于分布优化配准的实时激光SLAM算法。设计了一个特征谱滤波器,该滤波器以归一化最小特征值为滤波对象,去除不符合设定分布的点云以减小分布拟合误差;提出了一个点云配准损失函数,对源点云和目标点云构成的联合协方差矩阵和误差项进行复合归一化,以减小关联距离过大的点在迭代求解过程中的干扰;设计了一个SLAM算法框架,该框架包含前端里程计、回环检测和后端优化等环节,兼容纯激光建图和激光/惯性融合建图,进而保证建图的精确性和一致性,并提高了算法的适应性。在公开数据集上进行了多组实验,实验结果表明,相较于现有SLAM算法,所提算法在精度和速度指标方面均具有较大优势。

关键词: 激光雷达, 点云配准, 广义迭代最近邻, 分布优化, 同步定位与建图

Abstract:

When scanning the surrounding environment, a lidar will generate some cluttered and sparse point cloud, which will cause excessive distribution fitting errors and correlation distances in the registration process, thus affecting the accuracy of the registration algorithm and the effect of simultaneous localization and mapping (SLAM). To address this problem, a real-time lidar SLAM algorithm based on distribution optimal registration is proposed. An eigenspectrum filter is designed, which takes the normalized minimum eigenvalue as the filtering object to filter out the points that do not match the set distribution in order to reduce the distribution fitting error. Secondly, a point cloud registration loss function is proposed for the compound normalization of the joint covariance matrix and error terms composed of the source and target point clouds to reduce the interference caused by points with excessive correlation distance in the iterative solution process. A SLAM algorithm framework is designed which contains front-end odometry, loop-closure detection, and back-end optimization. It is compatible with pure lidar mapping and lidar/inertial fusion mapping, thus ensuring the accuracy and consistency of the mapping and improving the adaptability of the algorithm. Several sets of experiments are conducted on public datasets. The experimental results show that the proposed algorithm has great advantages in terms of accuracy and speed compared with the existing state-of-the-art SLAM algorithms.

Key words: lidar, point cloud registration, generalized iterative closest point, distribution optimal, simultaneous localization and mapping(SLAM)

中图分类号: