1 |
Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99-110.
|
2 |
Geiger Andreas, Lenz Philip, Urtasun R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3354-3361.
|
3 |
焦嵩鸣, 姚鑫, 丁辉, 等. 适应于环境空间变化的激光雷达SLAM建图方法[J]. 系统仿真学报, 2023, 35(8): 1788-1798.
|
|
Jiao Songming, Yao Xin, Ding Hui, et al. Lidar SLAM Mapping Method Adapted to Environmental Spatial Changes[J]. Journal of System Simulation, 2023, 35(8): 1788-1798.
|
4 |
Brock E, Huang Chengxuan, Wu Dalei, et al. Lidar-based Real-time Mapping for Digital Twin Development[C]//2021 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2021: 1-6.
|
5 |
Singandhupe A, La H M. A Review of SLAM Techniques and Security in Autonomous Driving[C]//2019 Third IEEE International Conference on Robotic Computing (IRC). Piscataway: IEEE, 2019: 602-607.
|
6 |
李维刚, 钟正, 王永强, 等. 基于时间距离-熵减策略的同步定位与地图构建算法[J]. 信息与控制, 2023, 52(5): 660-668, 688.
|
|
Li Weigang, Zhong Zheng, Wang Yongqiang, et al. Synchronous Localization and Mapping Algorithm Based on Time Distance-entropy Reduction Strategy[J]. Information and Control, 2023, 52(5): 660-668, 688.
|
7 |
黄鹤, 佟国峰, 夏亮, 等. SLAM技术及其在测绘领域中的应用[J]. 测绘通报, 2018(3): 18-24.
|
|
Huang He, Tong Guofeng, Xia Liang, et al. SLAM Technology and Its Application in Surveying and Mapping[J]. Bulletin of Surveying and Mapping, 2018(3): 18-24.
|
8 |
Cadena Cesar, Carlone L, Carrillo Henry, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-perception Age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332.
|
9 |
Zhang Ji, Singh S. Low-drift and Real-time Lidar Odometry and Mapping[J]. Autonomous Robots, 2017, 41(2): 401-416.
|
10 |
Shan Tixiao, Englot B. LeGO-LOAM: Lightweight and Ground-optimized Lidar Odometry and Mapping on Variable Terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 4758-4765.
|
11 |
Wang Han, Wang Chen, Chen Chunlin, et al. F-LOAM: Fast LiDAR Odometry and Mapping[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2021: 4390-4396.
|
12 |
Cedric Le Gentil, Vidal-Calleja Teresa, Huang Shoudong. IN2LAAMA: Inertial Lidar Localization Autocalibration and Mapping[J]. IEEE Transactions on Robotics, 2021, 37(1): 275-290.
|
13 |
Shan Tixiao, Englot B, Meyers D, et al. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 5135-5142.
|
14 |
Pan Yue, Xiao Pengchuan, He Yujie, et al. MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11633-11640.
|
15 |
Zhou Pengwei, Guo Xuexun, Pei Xiaofei, et al. T-LOAM: Truncated Least Squares LiDAR-only Odometry and Mapping in Real Time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
|
16 |
Dellenbach Pierre, Jean Emmanuel Deschaud, Jacquet Bastien, et al. CT-ICP: Real-time Elastic LiDAR Odometry with Loop Closure[C]//2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2022: 5580-5586.
|
17 |
Chang Yun, Ebadi K, Denniston C E, et al. LAMP 2.0: A Robust Multi-robot SLAM System for Operation in Challenging Large-scale Underground Environments[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9175-9182.
|
18 |
Segal A V, Haehnel D, Thrun S. Generalized-ICP[C]//Proceedings of Robotics: Science and Systems. [S.l.:s.n.], 2009: 21.
|
19 |
Koide Kenji, Yokozuka Masashi, Oishi Shuji, et al. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11054-11059.
|
20 |
Vlaminck Michiel, Luong Hiep, Philips Wilfried. Surface-based GICP[C]//2018 15th Conference on Computer and Robot Vision (CRV). Piscataway: IEEE, 2018: 262-268.
|
21 |
Servos James, Waslander Steven L. Multi-channel Generalized-ICP: A Robust Framework for Multi-channel Scan Registration[J]. Robotics and Autonomous Systems, 2017, 87: 247-257.
|
22 |
Ren Zhuli, Wang Liguan, Bi Lin. Robust GICP-Based 3D LiDAR SLAM for Underground Mining Environment[J]. Sensors, 2019, 19(13): 2915.
|
23 |
Chen K, Lopez B T, Agha-mohammadi A A, et al. Direct LiDAR Odometry: Fast Localization with Dense Point Clouds[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2000-2007.
|
24 |
Yokozuka Masashi, Koide Kenji, Oishi Shuji, et al. LiTAMIN: LiDAR-based Tracking and Mapping by Stabilized ICP for Geometry Approximation with Normal Distributions[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 5143-5150.
|
25 |
Yokozuka Masashi, Koide Kenji, Oishi Shuji, et al. LiTAMIN2: Ultra Light LiDAR-based SLAM Using Geometric Approximation Applied with KL-divergence[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11619-11625.
|
26 |
Wang Jikai, Xu Meng, Foroughi Farzin, et al. FasterGICP: Acceptance-rejection Sampling Based 3D Lidar Odometry[J]. IEEE Robotics and Automation Letters, 2022, 7(1): 255-262.
|
27 |
Blanco J L, Rai P K. Nanoflann: A C++ Header-only Fork of FLANN, a Library for Nearest Neighbor (NN) with KD-trees[EB/OL]. [2023-01-18]. .
|
28 |
Xu Wei, Cai Yixi, He Dongjiao, et al. FAST-LIO2: Fast Direct LiDAR-inertial Odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073.
|
29 |
Kim Giseop, Kim Ayoung. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 4802-4809.
|
30 |
Dellaert F, Kaess M. Factor Graphs for Robot Perception[M]. Hanover: Now Publishers Inc., 2017: 1-139.
|
31 |
Kim Giseop, Yeong Sang Park, Cho Younghun, et al. MulRan: Multimodal Range Dataset for Urban Place Recognition[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 6246-6253.
|
32 |
Liu Xiyuan, Liu Zheng, Kong Fanze, et al. Large-scale LiDAR Consistent Mapping Using Hierarchical LiDAR Bundle Adjustment[J]. IEEE Robotics and Automation Letters, 2023, 8(3): 1523-1530.
|